On Almost Everywhere Strong Convergence of Multidimensional Continued Fraction Algorithms
نویسندگان
چکیده
We describe a strategy which allows one to produce computer assisted proofs of almost everywhere strong convergence of Jacobi-Perron type algorithms in arbitrary dimension. Numerical work is carried out in dimension three to illustrate our method. To the best of our knowledge this is the rst result on almost everywhere strong convergence in dimension greater than two.
منابع مشابه
Individual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state
The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing m-almost everywhere convergence, where m...
متن کاملThe d-Dimensional Gauss Transformation: Strong Convergence and Lyapunov Exponents
We discuss a method of producing computer assisted proofs of almost everywhere strong convergence of the d-dimensional Gauss algorithm. This algorithm is equivalent to Brun's algorithm and to the modi ed Jacobi-Perron algorithm considered by Podsypanin and Schweiger. In this paper we focus on the reduction of the problem to a nite number of calculations. These calculations have been carried out...
متن کاملLimiting Modular Symbols and the Lyapunov Spectrum
This paper consists of variations upon a theme, that of limiting modular symbols introduced in [16]. We show that, on level sets of the Lyapunov exponent for the shift map T of the continued fraction expansion, the limiting modular symbol can be computed as a Birkho average. We show that the limiting modular symbols vanish almost everywhere on T{invariant subsets for which a corresponding trans...
متن کاملEntropy quotients and correct digits in number-theoretic expansions
Expansions that furnish increasingly good approximations to real numbers are usually related to dynamical systems. Although comparing dynamical systems seems difficult in general, Lochs was able in 1964 to relate the relative speed of approximation of decimal and regular continued fraction expansions (almost everywhere) to the quotient of the entropies of their dynamical systems. He used detail...
متن کاملS - adic expansions related to continued fractions
We consider S-adic expansions associated with continued fraction algorithms, where an S-adic expansion corresponds to an infinite composition of substitutions. Recall that a substitution is a morphism of the free monoid. We focus in particular on the substitutions associated with regular continued fractions (Sturmian substitutions), and with Arnoux–Rauzy, Brun, and Jacobi–Perron (multidimension...
متن کامل