Robust Bayesian Inference Using the Mixture Priors

نویسندگان

  • Muneeb Javed
  • Muhammad Saleem
چکیده

In Bayesian estimation the posterior distribution is proportional to likelihood function and the prior density of the parameter. Thus Bayesian inference, most often, is affected by the prior density. In this paper we look at how we can make Bayesian inference more robust against a poorly specified prior. We find that using a mixture of conjugate priors enables us to do this. We allow a small prior probability that our prior is misspecified. If the likelihood is very different than what would be expected under the prior, the posterior probability of misspecification is large and our posterior distribution will depend mostly on the likelihood.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Bayesian nonparametric inference on stochastic ordering

This article considers Bayesian inference on collections of unknown distributions subject to a partial stochastic ordering. To address problems in testing of equalities between groups and estimation of group-specific distributions, we propose classes of restricted dependent Dirichlet process (rDDP) priors. These rDDP priors have full support in the space of stochastically ordered distributions,...

متن کامل

Spike-and-Slab Dirichlet Process Mixture Models

In this paper, Spike-and-Slab Dirichlet Process (SS-DP) priors are introduced and discussed for non-parametric Bayesian modeling and inference, especially in the mixture models context. Specifying a spike-and-slab base measure for DP priors combines the merits of Dirichlet process and spike-and-slab priors and serves as a flexible approach in Bayesian model selection and averaging. Computationa...

متن کامل

Classical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data

Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...

متن کامل

Bayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function

In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013