Activity-dependent expression of NT-3 in muscle cells in culture: implications in the development of neuromuscular junctions.
نویسندگان
چکیده
Although activity-dependent expression of neurotrophins has been studied extensively in the CNS, its physiological role during synapse development is not well established. At the developing neuromuscular junction in culture, exogenous application of the neurotrophin BDNF or NT-3 has been shown to acutely potentiate synaptic transmission and chronically promote synapse maturation. Using the same cell culture model, we have investigated activity-dependent neurotrophin expression in muscle cells and its role in developing neuromuscular synapses. Membrane depolarization, elicited by either depolarizing agents or repetitive electric stimulation, rapidly and specifically increased the levels of NT-3 mRNA in developing Xenopus laevis muscle cells in culture. NT-3 gene expression also was enhanced by acetylcholine (ACh), the neurotransmitter that causes muscle membrane depolarization. The effects of depolarization were mediated by increasing intracellular calcium concentration. Moreover, factor(s) induced by membrane depolarization appeared to enhance synaptic transmission at the developing neuromuscular junction. The frequency of spontaneous synaptic currents (SSCs) recorded from neuromuscular synapses was increased significantly after treatment with conditioned medium from depolarized muscle cultures. The amplitude, rise time, and decay time of SSCs were not affected, indicating a presynaptic action of the conditioned medium. The effects of the conditioned medium were blocked, partially, by the NT-3 scavenger TrkC-IgG, suggesting that the potentiation of synaptic efficacy was attributable, at least in part, to elevated NT-3 as a consequence of muscle depolarization. Thus, activity-dependent expression of muscle NT-3 may contribute to the development of the neuromuscular synapse.
منابع مشابه
The Response of Skeletal Muscle-Expressed Neurotrophins to Acute Resistance Exercise in Male Wistar Rats
Background. BDNF and NT-4/5 have been proposed to be involved in the coordinated adaptations of the neuromuscular system to the elevated level of activity, but an activity-dependent expression of neurotrophins in skeletal muscle is not well established. Objectives. We, therefore, investigated the effect of one session of resistance exercise on mRNA expression of some neurotrophins in Slow and ...
متن کاملRepression-free utrophin-A 5’UTR variants
Mutation in the dystrophin gene results Duchenne Muscular Dystrophy (DMD), an X-linked fatal neuromuscular disorder. Dystrophin deficiency can be compensated by upregulation of utrophin, an autosomal homologue of dystrophin. But the expression of utrophin in adults is restricted to myotendinous and neuromuscular junctions. Therefore utrophin upregulation throughout the muscle fiber can only be ...
متن کاملبررسی تاثیر یک جلسه فعالیت مقاومتی بر بیان ژن های NT-4/5 و p75 در عضلات سریع و آهسته موش های صحرایی
Background and purpose: Activity-dependent expression of neurotrophins in skeletal muscle is not well established. In this research we aimed at studying the effect of one session resistance exercise on mRNA expression of NT4.5 and P75 proteins in slow and fast skeletal muscles of Wistar rats. Materials and methods: Sixteen male Wistar rats (10 wk of age) were housed at room temperature under a...
متن کاملExpression and localization of the phosphoglucomutase-related cytoskeletal protein, aciculin, in skeletal muscle.
Recently, a 60/63 kDa cytoskeletal protein, highly homologous to the glycolytic enzyme phosphoglucomutase (PGM 1), was isolated from smooth muscle tissue and shown to localize in various adherens-type junctions of muscle and some nonmuscle cells. Since this protein, tentatively named 'aciculin', was enriched in muscle tissues and cells, we have attempted to study its expression and localization...
متن کاملNeuromuscular junction disassembly and muscle fatigue in mice lacking neurotrophin-4.
Neurotrophin-4 (NT-4) is produced by slow muscle fibers in an activity-dependent manner and promotes growth and remodeling of adult motorneuron innervation. However, both muscle fibers and motor neurons express NT-4 receptors, suggesting bidirectional NT-4 signaling at the neuromuscular junction. Mice lacking NT-4 displayed enlarged and fragmented neuromuscular junctions with disassembled posts...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 9 شماره
صفحات -
تاریخ انتشار 1997