Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice.
نویسندگان
چکیده
Rice (Oryza sativa) as a staple food, provides a major source of dietary selenium (Se) for humans, which essentially requires Se, however, the molecular mechanism for Se uptake is still poorly understood. Herein, we show evidence that the uptake of selenite, a main bioavailable form of Se in paddy soils, is mediated by a silicon (Si) influx transporter Lsi1 (OsNIP2;1) in rice. Defect of OsNIP2;1 resulted in a significant decrease in the Se concentration of the shoots and xylem sap when selenite was given. However, there was no difference in the Se concentration between the wild-type rice and mutant of OsNIP2;1 when selenate was supplied. A short-term uptake experiment showed that selenite uptake greatly increased with decreasing pH in the external solution. Si as silicic acid did not inhibit the Se uptake from selenite in both rice and yeast (Saccharomyces cerevisiae) at low pHs. Expression of OsNIP2;1 in yeast enhanced the selenite uptake at pH 3.5 and 5.5 but not at pH 7.5. On the other hand, defect of Si efflux transporter Lsi2 did not affect the uptake of Se either from selenite or selenate. Taken together, our results indicate that Si influx transporter OsNIP2;1 is permeable to selenite.
منابع مشابه
Transporters of arsenite in rice and their role in arsenic accumulation in rice grain.
Arsenic poisoning affects millions of people worldwide. Human arsenic intake from rice consumption can be substantial because rice is particularly efficient in assimilating arsenic from paddy soils, although the mechanism has not been elucidated. Here we report that two different types of transporters mediate transport of arsenite, the predominant form of arsenic in paddy soil, from the externa...
متن کاملOsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice
• Selenite is a predominant form of selenium (Se) available to plants, especially in anaerobic soils, but the molecular mechanism of selenite uptake by plants is not well understood. • ltn1, a rice mutant previously shown to have increased phosphate (Pi) uptake, was found to exhibit higher selenite uptake than the wild-type in both concentration- and time-dependent selenite uptake assays. Respi...
متن کاملIdentification and Characterization of Maize and Barley Lsi2-Like Silicon Efflux Transporters Reveals a Distinct Silicon Uptake System from That in Rice W
Silicon (Si) uptake has been extensively examined in rice (Oryza sativa), but it is poorly understood in other gramineous crops. We identified Low Silicon Rice 2 (Lsi2)-like Si efflux transporters from two important gramineous crops: maize (Zea mays) and barley (Hordeum vulgare). Both maize and barley Lsi2 expressed in Xenopus laevis oocytes showed Si efflux transport activity. Furthermore, bar...
متن کاملZinc- and bicarbonate-dependent ZIP8 transporter mediates selenite uptake
Selenite (HSeO3-) is a monovalent anion of the essential trace element and micronutrient selenium (Se). In therapeutic concentrations, HSeO3- has been studied for treating certain cancers, serious inflammatory disorders, and septic shock. Little is known, however, about HSeO3- uptake into mammalian cells; until now, no mammalian HSeO3- uptake transporter has been identified. The ubiquitous mamm...
متن کاملRice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth.
Excessive accumulation of sodium in plants causes toxicity. No mutation that greatly diminishes sodium (Na+) influx into plant roots has been isolated. The OsHKT2;1 (previously named OsHKT1) transporter from rice functions as a relatively Na+-selective transporter in heterologous expression systems, but the in vivo function of OsHKT2;1 remains unknown. Here, we analyzed transposon-insertion ric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 153 4 شماره
صفحات -
تاریخ انتشار 2010