Cell-free rolling mediated by L-selectin and sialyl Lewis(x) reveals the shear threshold effect.

نویسندگان

  • A W Greenberg
  • D K Brunk
  • D A Hammer
چکیده

The selectin family of adhesion molecules mediates attachment and rolling of neutrophils to stimulated endothelial cells. This step of the inflammatory response is a prerequisite to firm attachment and extravasation. We have reported that microspheres coated with sialyl Lewis(x) (sLe(x)) interact specifically and roll over E-selectin and P-selectin substrates (Brunk et al., 1996; Rodgers et al 2000). This paper extends the use of the cell-free system to the study of the interactions between L-selectin and sLe(x) under flow. We find that sLe(x) microspheres specifically interact with and roll on L-selectin substrates. Rolling velocity increases with wall shear stress and decreases with increasing L-selectin density. Rolling velocities are fast, between 25 and 225 microm/s, typical of L-selectin interactions. The variability of rolling velocity, quantified by the variance in rolling velocity, scales linearly with rolling velocity. Rolling flux varies with both wall shear stress and L-selectin site density. At a density of L-selectin of 800 sites/microm(2), the rolling flux of sLe(x) coated microspheres goes through a clear maximum with respect to shear stress at 0.7 dyne/cm(2). This behavior, in which the maintenance and promotion of rolling interactions on selectins requires shear stress above a threshold value, is known as the shear threshold effect. We found that the magnitude of the effect is greatest at an L-selectin density of 800 sites/microm(2) and gradually diminishes with increasing L-selectin site density. Our study is the first to reveal the shear threshold effect with a cell free system and the first to show the dependence of the shear threshold effect on L-selectin site density in a reconstituted system. Our ability to recreate the shear threshold effect in a cell-free system strongly suggests the origin of the effect is in the physical chemistry of L-selectin interaction with its ligand, and largely eliminates cellular features such as deformability or topography as its cause.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Shear Threshold Effect for Particle Adhesion to Bioreactive Surfaces: Influence of Receptor and Ligand Site Density

Selectins are cell adhesion molecules that mediate capture and rolling adhesion of white blood cells to vascular walls, an essential component of the inflammatory response. Adhesion through L-selectin requires a hydrodynamic shear stress above a threshold level, a phenomenon known as the shear threshold effect. We have reported that the shear threshold effect can he re-created in cell-free syst...

متن کامل

Inhibition of L-selectin-mediated leukocyte rolling by synthetic glycoprotein mimics.

Synthetic carbohydrate and glycoprotein mimics displaying sulfated saccharide residues have been assayed for their L-selectin inhibitory properties under static and flow conditions. Polymers displaying the L-selectin recognition epitopes 3',6-disulfo Lewis x(Glc) (3-O-SO3-Galbeta1alpha4(Fucalpha1alpha3)-6-O-SO3-Glcbeta+ ++-OR) and 3',6'-disulfo Lewis x(Glc) (3, 6-di-O-SO3-Galbeta1alpha4(Fucalph...

متن کامل

Synthetic glycoprotein mimics inhibit L-selectin-mediated rolling and promote L-selectin shedding.

L-selectin is a leukocyte cell-surface protein that facilitates the rolling of leukocytes along the endothelium, a process that leads to leukocyte migration to a site of infection. Preventing L-selectin-mediated rolling minimizes leukocyte adhesion and extravasation; therefore, compounds that inhibit rolling may act as anti-inflammatory agents. To investigate the potential role of multivalent l...

متن کامل

Glycolipid ligands for selectins support leukocyte tethering and rolling under physiologic flow conditions.

Selectin interactions with glycolipids have been examined previously under static conditions, whereas physiologic interactions mediated by selectins take place under flow. We find that under physiologic flow conditions, sialyl Lewis(x) (sLe(x)) glycolipid and sialyl Lewisa (sLe(a)) neoglycolipid support tethering and rolling adhesions of Chinese hamster ovary (CHO) cells expressing E-selectin a...

متن کامل

Sialyl Lewis(x)-mediated, PSGL-1-independent rolling adhesion on P-selectin.

Selectin-mediated cell adhesion is an essential component of the inflammatory response. In an attempt to unambiguously identify molecular features of ligands that are necessary to support rolling adhesion on P-selectin, we have used a reconstituted ("cell-free") system in which ligand-coated beads are perfused over soluble P-selectin surfaces. We find that beads coated with the saccharides sial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 79 5  شماره 

صفحات  -

تاریخ انتشار 2000