Cyanide metabolism in relation to ethylene production in plant tissues.

نویسندگان

  • W K Yip
  • S F Yang
چکیده

HCN is the putative product of C-1 and amino moieties of 1-aminocyclopropane-1-carboxylic acid (ACC) during its conversion to ethylene. In apple (Malus sylvestrus Mill.) slices or auxin-treated mungbean (Vigna radiata L.) hypocotyls, which produced ethylene at high rates, the steady state concentration of HCN was found to be no higher than 0.2 micromolar, which was too low to inhibit respiration (reported Ki for HCN to inhibit respiration was 10-20 micromolar). However, these tissues became cyanogenic when treated with ACC, the precursor of ethylene, and with 2-aminoxyacetic acid, which inhibits beta-cyanoalanine synthase, the main enzyme to detoxify HCN; the HCN levels in these tissues went up to 1.7 and 8.1 micromolar, respectively. Although ethylene production by avocado (Persea gratissima) and apple fruits increased several hundred-fold during ripening, beta-cyanoalanine synthase activity increased only one- to two-fold. These findings support the notion that HCN is a co-product of ethylene biosynthesis and that the plant tissues possess ample capacity to detoxify HCN formed during ethylene biosynthesis so that the concentration of HCN in plant tissues is kept at a low level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ethylene biosynthesis in relation to cyanide metabolism

Cyanide is a co-product of ethylene biosynthesis in higher plants via the ACC pathway. In certain physiological states, such as fruit ripening and flower senescence, and in many environmental conditions, such as flooding and chilling, ethylene biosynthesis is greatly induced. Cyanide is toxic to plants if it accumulates in plant tissues; however, during fruit ripening, the co-product cyanide is...

متن کامل

A NEW METHOD FOR THE QUANTIFICATION OF 1 -(MALONYLAMINO)CYCLOPROPANE- 1 - CARBOXYLIC ACID IN WATER-STRESSED PLANT TISSUES

Since the discovery of MACC as a major metabolite of both endogenous and exogenously applied ACC, it has become evident that the formation of MACC from ACC can act to regulate ethylene production in certain tissues. Hence, it was suggested that MACC could serve as an indicator of water-stress history in plant tissues. The accurate quantification of MACC in plant tissues is essential for the...

متن کامل

Effects of Cyanide and Ethylene on the Respiration of Cyanide-sensitive and Cyanide-resistant Plant Tissues.

The effects of cyanide and ethylene, respectively, were studied on the respiration of a fully cyanide-sensitive tissue-the fresh pea, a slightly cyanide-sensitive tissue-the germinating pea seedling, and a cyanide-insensitive tissue-the cherimoya fruit. Cyanide inhibition of both fresh pea and pea seedling respiration was attended by a conventional Pasteur effect where fermentation was enhanced...

متن کامل

SALICYLIC ACID INHIBITION OF GERMINATION, ETHYLENE PRODUCTION AND RESPIRATION IN COCKLEBUR SEEDS

Salicylic acid (SA) inhibited germination of cocklebur (Xanthium pennsylvanicum Wlr), lower seeds, which are completely after-ripened and nondormant. SA also inhibited ethylene production during a pre-germination period of the seeds. Exogenous ethylene overcame the inhibtion of the seed germination by SA. Moreover, SA reduced respiration in pre-germinating whole seeds as well as excised axial...

متن کامل

Comparative effects of ethylene and cyanide on respiration, polysome prevalence, and gene expression in carrot roots.

Treatment of carrot roots (Daucus carota L.) with 10 microliters per liter ethylene in O(2) evokes a three- to four-fold increase in polysome prevalence and associated poly(A)(+) RNA. The increase in polysome prevalence is attended by a similar change in CO(2) evolution. The increase in polysomal poly(A)(+) mRNA constitutes primarily a generic increase in constitutive mRNAs as assayed by in vit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 88 2  شماره 

صفحات  -

تاریخ انتشار 1988