Context-Dependent Knowledge Graph Embedding
نویسندگان
چکیده
We consider the problem of embedding knowledge graphs (KGs) into continuous vector spaces. Existing methods can only deal with explicit relationships within each triple, i.e., local connectivity patterns, but cannot handle implicit relationships across different triples, i.e., contextual connectivity patterns. This paper proposes context-dependent KG embedding, a twostage scheme that takes into account both types of connectivity patterns and obtains more accurate embeddings. We evaluate our approach on the tasks of link prediction and triple classification, and achieve significant and consistent improvements over state-of-the-art methods.
منابع مشابه
GAKE: Graph Aware Knowledge Embedding
Knowledge embedding, which projects triples in a given knowledge base to d-dimensional vectors, has attracted considerable research efforts recently. Most existing approaches treat the given knowledge base as a set of triplets, each of whose representation is then learned separately. However, as a fact, triples are connected and depend on each other. In this paper, we propose a graph aware know...
متن کاملDetecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملMeta-programming Composers In Second-Generation Component Systems
Future component systems will require that components can be composed exibly. In contrast to current systems which only support a xed set of composition mechanisms, the component system should provide a composition language in which users can deene their own speciic composers. It is argued for an object-oriented setting that this will be possible by meta-programming the class-graph. Composers w...
متن کاملParaGraphE: A Library for Parallel Knowledge Graph Embedding
Knowledge graph embedding aims at translating the knowledge graph into numerical representations by transforming the entities and relations into continuous low-dimensional vectors. Recently, many methods [1, 5, 3, 2, 6] have been proposed to deal with this problem, but existing single-thread implementations of them are time-consuming for large-scale knowledge graphs. Here, we design a unified p...
متن کاملTorusE: Knowledge Graph Embedding on a Lie Group
Knowledge graphs are useful for many artificial intelligence (AI) tasks. However, knowledge graphs often have missing facts. To populate the graphs, knowledge graph embedding models have been developed. Knowledge graph embedding models map entities and relations in a knowledge graph to a vector space and predict unknown triples by scoring candidate triples. TransE is the first translation-based...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015