Transient impairment of dynamic renal autoregulation in early diabetes mellitus in rats.
نویسندگان
چکیده
Renal autoregulation is impaired in early (1 wk) diabetes mellitus (DM) induced by streptozotocin, but effective in established DM (4 wk). Furthermore nitric oxide synthesis (NOS) inhibition with N(G)-nitro-L-arginine methyl ester (L-NAME) significantly improved autoregulation in early DM but not in established DM. We hypothesized that autoregulation is transiently impaired in early DM because of increased NO availability in the kidney. Because of the conflicting evidence available for a role of NO in DM, we tested the hypothesis that DM reduces autoregulation effectiveness by reducing the spatial similarity of autoregulation. Male Long-Evans rats were divided into control (CON) and diabetic (DM; streptozotocin) groups and followed for either 1 wk (CON1, n = 6; DM1, n = 5) or 4 wk (CON4, n = 7; DM4, n = 7). At the end of the experiment, dynamic autoregulation was assessed in isoflurane-anesthetized rats by whole kidney RBF during baseline, NOS1 inhibition, and nonselective NOS inhibition. Kidney surface perfusion, monitored with laser speckle contrast imaging, was used to assess spatial heterogeneity of autoregulation. Autoregulation was significantly impaired in DM1 rats and not impaired in DM4 rats. L-NAME caused strong renal vasoconstriction in all rats, but did not significantly affect autoregulation dynamics. Autoregulation was more spatially heterogeneous in DM1, but not DM4. Therefore, our results, which are consistent with transient impairment of autoregulation in DM, argue against the hypothesis that this impairment is NO-dependent, and suggest that spatial properties of autoregulation may also contribute to reduced autoregulatory effectiveness in DM1.
منابع مشابه
Early Renal Histological Changes in Alloxan-Induced Diabetic Rats
Diabetes mellitus is a progressive disease. Most investigators have focused on glomerular changes in diabetic kidney and non-glomerular alterations have been less attended. The present study has been conducted to find early non-glomerular histological changes in diabetic renal tissue. Twenty male Wistar rats weighting 200-250 g were used for the diabetic group. Diabetes mellitus was induced by ...
متن کاملEnsete superbum ameliorates renal dysfunction in experimental diabetes mellitus
Objective(s):Hyperglycemia mediated oxidative stress plays a key role in the pathogenesis of diabetic complications like nephropathy. In the present study, we evaluated the effect of ethanolic extract of Ensete superbum seeds (ESSE) on renal dysfunction and oxidative stress in streptozotocin-induced diabetic rats. Materials and Methods:Glucose, HbA1c, total protein, albumin, renal function mar...
متن کاملThe effect of green tea extract on oxidative stress and spatial learning in Streptozotocin-diabetic rats
Diabetes mellitus is associated with distribution of cognitive functioning. Hyperglycemia Diabetes mellitus is associated with distribution of cognitive functioning. Hyperglycemia induced oxidative stress has been proposed as a cause of memory complications of diabetes including cognitive impairment. The aim of this study was to examine total green tea extract (TGTE), a potent free radical scav...
متن کاملGenetic Susceptibility to Transient and Permanent Neonatal Diabetes Mellitus
Neonatal diabetes mellitus (NDM) is a rare kind of diabetes characterized by hyperglycemia and low levels of insulin. Clinically, it is categorized into two main types: transient NDM (TNDM) and permanent NDM (PNDM). These types are diagnosed based on duration of insulin dependence early in the disease. In TNDM, diabetes begins in the first few weeks of life with remission in a few months. Howev...
متن کاملSalt-resistant blood pressure and salt-sensitive renal autoregulation in chronic streptozotocin diabetes.
Hyperfiltration occurs in early type 1 diabetes mellitus in both rats and humans. It results from afferent vasodilation and thus may impair stabilization of glomerular capillary pressure by autoregulation. It is inversely related to dietary salt intake, the "salt paradox." Restoration of normal glomerular filtration rate (GFR) involves increased preglomerular resistance, probably mediated by tu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 309 8 شماره
صفحات -
تاریخ انتشار 2015