Design of stiff, tough and stretchy hydrogel composites via nanoscale hybrid crosslinking and macroscale fiber reinforcement.
نویسندگان
چکیده
Hydrogels' applications are usually limited by their weak mechanical properties. Despite recent great progress in developing tough hydrogels, it is still challenging to achieve high values of , toughness and modulus all together in synthetic hydrogels. In this paper, we designed highly stretchable, tough, yet stiff hydrogel composites via a combination of nanoscale hybrid crosslinking and macroscale fiber reinforcement. The hydrogel composites were constructed by impregnating a 3D-printed thermoplastic-fiber mesh with a tough hydrogel crosslinked both covalently and ionically. The hydrogel composites can achieve a fracture energy of over 30,000 J m(-2), a modulus of over 6 MPa, and can be stretched over 2.8 times even in the presence of large structural defects. The enhancement of toughness in the new hydrogel composites relies on multiple pairs of toughening mechanisms which span over multiple length scales. A theoretical model is further developed to predict the toughness and modulus of the hydrogel composites and guide the design of future materials.
منابع مشابه
MECHANICAL CHARACTERIZATION AND ANALYSIS OF RANDOMLY DISTRIBUTED SHORT BANANA FIBER REINFORCED EPOXY COMPOSITES
Short banana fiber reinforced composites have been prepared in laboratory to determine mechanical properties. It has been observed that as soon as the percentage of the banana fiber increases slightly there is a tremendous increase in ultimate tensile strength, % of strain and young modulus of elasticity. Reinforcement of banana fibers in epoxy resin increases stiffness and decreases damping pr...
متن کاملTough dual nanocomposite hydrogels with inorganic hybrid crosslinking.
A dual nanocomposite hydrogel with inorganic hybrid crosslinking was fabricated through a simultaneous sol-gel technique and free radical polymerization. Due to the multi-strengthening mechanism of the dual nanocomposite, the hydrogel was super tough and strong with a compressive stress of 32.00 MPa without rupture even at 100% strain, while it exhibited excellent fatigue resistant properties.
متن کاملINTRAPLY HYBRID COMPOSITES BASED ON BASALT AND NYLON WOVEN FABRICS: TENSILE AND COMPRESSIVE PROPERTIES
In this study, the tensile and compressive behaviors of pure and hybrid composite laminates reinforced by basalt–nylon bi-woven intra-ply fabrics were experimentally investigated. Epoxy resin was used as the matrix material. The purpose of using this hybrid composite is to obtain superior characteristics by using the good strength property of basalt fiber with the excellent toughness of ny...
متن کاملElectrical and Mechanical Performance of Hybrid and Non-hybrid Composites
This paper investigated the moisture absorption, mechanical behavior and the dielectric performance of hybrid and non-hybrid polymeric composites. Hand lay-up technique was used for processing carbon; glass reinforced polyester resin composites (non-hybrid) and carbon-glass/polyester hybrid composites with various fiber configurations. The maximum resistance of water absorption was obtained for...
متن کاملIn vitro effect of fiber reinforcement on fracture resistance of incisal edge composite restorations
Objective: Introduction of fiber-reinforced composites (FRC) greatly enhanced the restoration of fractured anterior teeth. The purpose of this study was to assess the effect of fiber reinforcement on fracture resistance of incisal edge composite restorations of variable thicknesses. Methods: Forty extracted sound human maxillary incisors were divided into four groups of 10. Incisal reduction wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 10 38 شماره
صفحات -
تاریخ انتشار 2014