A Novel Protein, Ubiquitous in Marine Phytoplankton, Concentrates Iron at the Cell Surface and Facilitates Uptake

نویسندگان

  • Joe Morrissey
  • Robert Sutak
  • Javier Paz-Yepes
  • Atsuko Tanaka
  • Ahmed Moustafa
  • Alaguraj Veluchamy
  • Yann Thomas
  • Hugo Botebol
  • François-Yves Bouget
  • Jeffrey B. McQuaid
  • Leila Tirichine
  • Andrew E. Allen
  • Emmanuel Lesuisse
  • Chris Bowler
چکیده

Numerous cellular functions including respiration require iron. Plants and phytoplankton must also maintain the iron-rich photosynthetic electron transport chain, which most likely evolved in the iron-replete reducing environments of the Proterozoic ocean [1]. Iron bioavailability has drastically decreased in the contemporary ocean [1], most likely selecting for the evolution of efficient iron acquisition mechanisms among modern phytoplankton. Mesoscale iron fertilization experiments often result in blooms dominated by diatoms [2], indicating that diatoms have adaptations that allow survival in iron-limited waters and rapid multiplication when iron becomes available. Yet the genetic and molecular bases are unclear, as very few iron uptake genes have been functionally characterized from marine eukaryotic phytoplankton, and large portions of diatom iron starvation transcriptomes are genes encoding unknown functions [3-5]. Here we show that the marine diatom Phaeodactylum tricornutum utilizes ISIP2a to concentrate Fe(III) at the cell surface as part of a novel, copper-independent and thermodynamically controlled iron uptake system. ISIP2a is expressed in response to iron limitation several days prior to the induction of ferrireductase activity, and it facilitates significant Fe(III) uptake during the initial response to Fe limitation. ISIP2a is able to directly bind Fe(III) and increase iron uptake when heterologously expressed, whereas knockdown of ISIP2a in P. tricornutum decreases iron uptake, resulting in impaired growth and chlorosis during iron limitation. ISIP2a is expressed by diverse marine phytoplankton, indicating that it is an ecologically significant adaptation to the unique nutrient composition of marine environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the Potential Probiotic Vibrio sp. V33 Antagonizing Vibrio Splendidus Based on Iron Competition

Background:Vibrio splendidusVs is an important aquaculture pathogen that can infect a broad host of marine organisms. In our previous study, an antagonistic bacterium Vibrio sp. V33 that possessed inhibitory effects on the growth and virulence of a pathogenic isolate V.splendidusVs was identified. O...

متن کامل

Direct Heme Uptake by Phytoplankton-Associated Roseobacter Bacteria

Iron is an essential micronutrient and can limit the growth of both marine phytoplankton and heterotrophic bacterioplankton. In this study, we investigated the molecular basis of heme transport, an organic iron acquisition pathway, in phytoplankton-associated Roseobacter bacteria and explored the potential role of bacterial heme uptake in the marine environment. We searched 153 Roseobacter geno...

متن کامل

Accelerated uptake by phytoplankton of iron bound to humic acids

Most of the dissolved iron (Fe) in seawater is complexed by organic ligands. One key issue in understanding Fe limitation in the sea is the bioavailability of different forms of Fe to marine phytoplankton. We measured Fe uptake by the coastal diatom Thalassiosira pseudonana and the cyanobacterium Synechococcus sp., using model ligands desferrioxamine B (DFB) and ferrichrome (FC), humic acids (H...

متن کامل

Nonreductive iron uptake mechanism in the marine alveolate Chromera velia.

Chromera velia is a newly cultured photosynthetic marine alveolate. This microalga has a high iron requirement for respiration and photosynthesis, although its natural environment contains less than 1 nm of this metal. We found that this organism uses a novel mechanism of iron uptake, differing from the classic reductive and siderophore-mediated iron uptake systems characterized in the model ye...

متن کامل

Limnol. Oceanogr., 44(4), 1999, 1002–1008

The consideration of iron effects on marine ecosystems has focused mainly on high-nitrate low-chlorophyll regions, but iron likely has an equally important regulatory role in coastal waters. Iron requirements of neritic phytoplankton not only are comparatively high but also differ substantially among species, so that iron fluctuations within metal-replete systems should strongly influence the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015