Improved hydrogen storage properties of MgH2 doped with chlorides of transition metals Hf and Fe
نویسندگان
چکیده
The effects of HfCl4 and FeCl3 addition on the de/rehydrogenation properties of MgH2 were investigated. Both HfCl4 and FeCl3-doped MgH2 samples started to released hydrogen at about 270 °C, a decreased of about 70 °C and about 140 °C compared to as-milled and as-received MgH2, respectively. In terms of the desorption kinetics, the HfCl4-doped MgH2 sample showed significant improvement, with 6.0 wt.% hydrogen released within 10 min at 300 °C, while the FeCl3-doped MgH2 and undoped MgH2 samples released 3.5 and 0.2 wt.% hydrogen, respectively, under the same conditions. In terms of the absorption kinetics, 5.5 wt.% hydrogen was charged at 300 °C under 3.0 MPa hydrogen in 1 minute for the HfCl4-doped MgH2 sample, while 4.8 wt.% was absorbed by the FeCl3-doped MgH2 sample, compared to just 3.0 wt.% hydrogen for the undoped MgH2 sample under the same conditions. From the Arrhenius plot based on isothermal dehydrogenation kinetics at different temperatures, the apparent activation energy of as-milled MgH2 is calculated to be 166 kJ/mol, and this value is reduced by 64 and 36 kJ/mol after doping with HfCl4 and FeCl3, respectively. A cycling study of dehydrogenation at 300 oC shows that the hydrogen capacity of the HfCl4-doped MgH2 sample was maintained at about 6 wt.% after 10 cycles. Based on the X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy examinations, we believe that the significant improvement of MgH2 sorption properties in the doped samples is due to the catalytic effects of in-situ generated metal species and MgCl2 that were formed during the dehydrogenation process.
منابع مشابه
DFT and HF Studies: Geometry, Hydrogen Bonding, Vibrational Frequencies and Electronic Properties of Enaminones and Their Complexes with Transition Metals
Enaminones are those structures made up three various functional groups including carbonyl, alkeneand amine groups which arelocated along with each other in a conjugate fashion. These compoundsare of much attention due to special characteristics and numerous applications. In the paper, sixvarious enaminone structures were theoretically optimized and after concluding, were compared withequivalen...
متن کاملCatalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling.
We examined the catalytic effect of nanoparticle 3d-transition metals on hydrogen desorption (HD) properties of MgH(2) prepared by mechanical ball milling method. All the MgH(2) composites prepared by adding a small amount of nanoparticle Fe(nano), Co(nano), Ni(nano), and Cu(nano) metals and by ball milling for 2 h showed much better HD properties than the pure ball-milled MgH(2) itself. In par...
متن کاملMicrostructural and Kinetic Evolution of Fe Doped MgH2 during H2 Cycling
The effect of extended H2 sorption cycles on the structure and on the hydrogen storage performances of MgH2 powders with 5 wt% of Fe particle catalyst is reported. MgH2 powders with and without Fe have been ball milled under Argon, the doped MgH2 nanocomposite has been cycled under hydrogen pressure up to a maximum of 47 desorption and absorption cycles at 300 °C. After acceleration during the ...
متن کاملHydrogen Desorption Properties of Nanocrystalline MgH2-10 wt.% ZrB2 Composite Prepared by Mechanical Alloying
Storage of hydrogen is one of the key challenges in developing hydrogen economy. Magnesium hydride (MgH2) is an attractive candidate for solid-state hydrogen storage for on-board applications. In this study, 10 wt.% ZrB2 was co-milled with magnesium hydride at different milling times to produce nanocrystalline composite powder. The effect of milling time and additive on the hydrogen desorption...
متن کاملH2 Desorption from MgH2 Surfaces with Steps and Catalyst-Dopants
Light-metal hydrides, like MgH2, remain under scrutiny as prototypes for reversible H-storage materials. For MgH2, we assess hydrogen desorption/adsorption properties (enthalpy and kinetic barriers) for stepped, catalyst-doped surfaces occurring, e.g., from ball-milling in real samples. Employing density functional theory and simulated annealing in a slab model, we studied initial H2 desorption...
متن کامل