Solution bias in ant colony optimisation: Lessons for selecting pheromone models
نویسندگان
چکیده
Ant colony optimisation is a constructive metaheuristic in which solutions are built probabilistically influenced by the parameters of a pheromone model—an analogue of the trail pheromones used by real ants when foraging for food. Recent studies have uncovered the presence of biases in the solution construction process, the existence and nature of which depend on the characteristics of the problem being solved. The presence of these solution construction biases induces biases in the pheromone model used, so selecting an appropriate model is highly important. The first part of this paper presents new findings bridging biases due to construction with biases in pheromone models. Novel approaches to the prediction of this bias are developed and used with the knapsack and generalised assignment problems. The second part of the paper deals with the selection of appropriate pheromone models when detailed knowledge of their biases is not available. Pheromone models may be derived either from characteristics of the way solutions are represented by the algorithm or characteristics of the solutions represented, which are often quite different. Recently it has been suggested that the latter is more appropriate. The relative performance of a number of alternative pheromone models for six well-known combinatorial optimisation problems is examined to test this hypothesis. Results suggest that, in general, modelling characteristics of solutions (rather than their representations) does lead to the best performance in ACO algorithms. Consequently, this principle may be used to guide the selection of appropriate pheromone models in problems to which ACO has not yet been applied.
منابع مشابه
A new Approach based on Ant Colony Optimization (ACO) to Determine the Supply Chain (SC) Design for a Product Mix
Manufacturing supply chain(SC) faces changing business environment and various customer demands. Pareto Ant Colony Optimisation (P-ACO) in order to obtain the non-dominated set of different SC designs was utilized as the guidance for designing manufacturing SC. PACO explores the solution space on the basis of applying the Ant Colony Optimisation algorithm and implementing more than one pheromon...
متن کاملHigher Order Pheromone Models in Ant Colony Optimisation
Ant colony optimisation is a constructive metaheuristic that successively builds solutions from problem-specific components. A parameterised model known as pheromone—an analogue of the trail pheromones used by real ants—is used to learn which components should be combined to produce good solutions. In the majority of the algorithm’s applications a single parameter from the model is used to infl...
متن کاملThe Accumulated Experience Ant Colony for the Travelling Salesman Problem
Ant colony optimisation techniques are usually guided by pheromone and heuristic cost information when choosing the next element to add to a solution. However, while an individual element may be attractive, usually its long term consequences are neither known nor considered. For instance, a short link in a TSP may be incorporated into an ant’s solution, yet, as a consequence of this link, the r...
متن کاملStructural Advantages for Ant Colony Optimisation Inherent in Permutation Scheduling Problems
When using a constructive search algorithm, solutions to scheduling problems such as the job shop and open shop scheduling problems are typically represented as permutations of the operations to be scheduled. The combination of this representation and the use of a constructive algorithm introduces a bias typically favouring good solutions. When ant colony optimisation is applied to these proble...
متن کاملFlexible job-shop scheduling with routing flexibility and separable setup times using ant colony optimisation method
This paper proposes an ant colony optimisation-based software system for solving FMS scheduling in a job-shop environment with routing flexibility, sequence-dependent setup and transportation time. In particular, the optimisation problem for a real environment, including parallel machines and operation lag times, has been approached by means of an effective pheromone trail coding and tailored a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & OR
دوره 35 شماره
صفحات -
تاریخ انتشار 2008