Another Class of Minimax Estimators of A Variance Covariance Matrix in Multivariate Normal Distribution
نویسنده
چکیده
It is well known that the best equivariant estimator of a variance covari-ance matrix of multivariate normal distribution with respect to the full ane group of transformation is not even minimax. Some minimax estimators have been proposed. Here we treat this problem in the framework of a multivari-ate analysis of variance(MANOVA) model and give other classes of minimax estimators.
منابع مشابه
Estimation of the mean vector in a singular multivariate normal distribution
This paper addresses the problem of estimating the mean vector of a singular multivariate normal distribution with an unknown singular covariance matrix. The maximum likelihood estimator is shown to be minimax relative to a quadratic loss weighted by the Moore-Penrose inverse of the covariance matrix. An unbiased risk estimator relative to the weighted quadratic loss is provided for a Baranchik...
متن کاملTruncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space
Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...
متن کاملMinimax estimators of a normal variance
In the estimation problem of unknown variance of a multivariate normal distribution, a new class of minimax estimators is obtained. It is noted that a sequence of estimators in our class converges to the Stein’s truncated estimator.
متن کاملEstimating a Bounded Normal Mean Under the LINEX Loss Function
Let X be a random variable from a normal distribution with unknown mean θ and known variance σ2. In many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. As the usual estimator of θ, i.e., X under the LINEX loss function is inadmissible, finding some competitors for X becomes worthwhile. The only study in the literature considered the problem of min...
متن کاملJPEN Estimation of Covariance and Inverse Covariance Matrix A Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty
We develop a method for estimating well-conditioned and sparse covariance and inverse covariance matrices from a sample of vectors drawn from a sub-gaussian distribution in high dimensional setting. The proposed estimators are obtained by minimizing the quadratic loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to some of the existing methods of covariance...
متن کامل