Convergence rates in monotone separable stochastic networks
نویسندگان
چکیده
We study bounds on the rate of convergence to the stationary distribution in monotone separable networks which are represented in terms of stochastic recursive sequences. Monotonicity properties of this subclass of Markov chains allow us to formulate conditions in terms of marginal network characteristics. Two particular examples, generalized Jackson networks and multiserver queues, are considered.
منابع مشابه
Tail Asymptotics for Monotone-separable Networks
A network belongs to the monotone separable class if its state variables are homogeneous and monotone functions of the epochs of the arrival process. This framework contains several classical queueingnetworkmodels, includinggeneralized Jacksonnetworks,maxplus networks, polling systems, multiserver queues, and various classes of stochastic Petri nets. We use comparison relationships between netw...
متن کاملStochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کاملStochastic Forward Douglas-Rachford Splitting for Monotone Inclusions
We propose a stochastic Forward Douglas-Rachford Splitting framework for finding a zero point of the sum of three maximally monotone operators in real separable Hilbert space, where one of them is cocoercive. We first prove the weak almost sure convergence of the proposed method. We then characterize the rate of convergence in expectation in the case of strongly monotone operators. Finally, we ...
متن کاملAlmost sure convergence of the forward-backward-forward splitting algorithm
In this paper, we propose a stochastic forward–backward–forward splitting algorithm and prove its almost sure weak convergence in real separable Hilbert spaces. Applications to composite monotone inclusion andminimization problems are demonstrated.
متن کاملar X iv : m at h / 05 10 11 7 v 3 [ m at h . PR ] 1 8 Ju l 2 00 6 TAIL ASYMPTOTICS FOR MONOTONE - SEPARABLE NETWORKS
A network belongs to the monotone separable class if its state variables are homogeneous and monotone functions of the epochs of the arrival process. This framework contains several classical queueing network models, including generalized Jackson networks, max-plus networks, polling systems, multiserver queues, and various classes of stochastic Petri nets. We use comparison relationships betwee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Queueing Syst.
دوره 52 شماره
صفحات -
تاریخ انتشار 2006