Ion-binding study by 17O solid-state NMR spectroscopy in the model peptide Gly-Gly-Gly at 19.6 T.
نویسندگان
چکیده
Li(+) and Ca(2+) binding to the carbonyl oxygen sites of a model peptide system has been studied by (17)O solid-state NMR spectroscopy. (17)O chemical shift (CS) and quadrupole coupling (QC) tensors are determined in four Gly-(Gly-(17)O)-Gly polymorphs by a combination of stationary and fast magic-angle spinning (MAS) methods at high magnetic field, 19.6 T. In the crystal lattice, the carbonyl oxygen of the central glycyl residue in two gly-gly-gly polymorphs form intermolecular hydrogen bonds with amides, whereas the corresponding carbonyl oxygens of the other two polymorphs form interactions with Li(+) and Ca(2+) ions. This permits a comparison of perturbations on (17)O NMR properties by ion binding and intermolecular hydrogen bonding. High quality spectra are augmented by density functional theory (DFT) calculations on large molecular clusters to gain additional theoretical insights and to aid in the spectral simulations. Ion binding significantly decreases the two (17)O chemical shift tensor components in the peptide plane, delta(11) and delta(22), and, thus, a substantial change in the isotropic chemical shift. In addition, quadrupole coupling constants are decreased by up to 1 MHz. The effects of ion binding are found to be almost an order of magnitude greater than those induced by hydrogen bonding.
منابع مشابه
Enhanced Bioadsorption of Cadmium and Nickel by E. coli Displaying A Metal Binding Motif Using CS3 Fimbriae
Display of peptides on the surface of bacteria offers many new and exciting applications in biotechnology. Fimbriae is a good candidate for epitope display on the surface of bacteria. The potential of CS3 fimbriae of enterotoxigenic E. coli as a display system has been investigated. A novel cell surface display system with metal binding property was developed by using CS3 fimbriae. Short metal ...
متن کاملConformational and ion binding properties of a cyclic octapeptide, cyclo (Ala-Leu-Pro-Gly)2.
The conformation and ion-binding characteristics of a cyclic octapeptide, cyclo (Ala-Leu-Pro-Gly)2, in a liphophilic solvent, acetonitrile, have been studied using CD and nmr spectroscopy. The peptide binds preferentially to divalent cations such as calcium, magnesium, and barium. The conformations of the free cyclic peptide and its calcium complex are very similar with well-defined beta- and g...
متن کاملSequence-specific recognition and cooperative dimerization of N-terminal aromatic peptides in aqueous solution by a synthetic host.
This article describes the selective recognition and noncovalent dimerization of N-terminal aromatic peptides in aqueous solution by the synthetic host compound, cucurbit[8]uril (Q8). Q8 is known to bind two aromatic guests simultaneously and, in the presence of methyl viologen, to recognize N-terminal tryptophan over internal and C-terminal sequence isomers. Here, the binding of Q8 to aromatic...
متن کاملPeptide 17O chemical shielding and electric field gradient tensors.
Complete (17)O chemical shielding (CS) and quadrupole coupling (QC) tensors and their molecular orientations were determined for the central residues in two tripeptides Gly-Gly-Val (GGV) and Ala-Gly-Gly (AGG) by single-crystal NMR methods. Tensor orientations in the two peptides are very similar, however, principal components are different. The most shielded CS and smallest magnitude QC compone...
متن کاملBinding behavior of aliphatic oligopeptides by bridged and metallobridged bis(beta-cyclodextrin)s bearing an oxamido bis(2-benzoic) carboxyl linker.
beta-Cyclodextrin dimers bearing an oxamido bis(2-benzoic) carboxyl linker (1) or its metal complexes (2 and 3) were newly synthesized, and their inclusion complexation behavior with a series of representative aliphatic oligopeptides, i.e., Leu-Gly, Gly-Leu, Gly-Pro, Glu-Glu, Gly-Gly, Gly-Gly-Gly, and Glu(Cys-Gly), was elucidated by means of UV/vis, circular dichroism, fluorescence, and 2D NMR ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 128 30 شماره
صفحات -
تاریخ انتشار 2006