Ectopic Mitf in the embryonic chick retina by co-transfection of β-catenin and Otx2.
نویسندگان
چکیده
PURPOSE Development of the retinal pigment epithelium (RPE) is controlled by intrinsic and extrinsic regulators including orthodenticle homeobox 2 (Otx2) and the Wnt/β-catenin pathway, respectively. Otx2 and β-catenin are necessary for the expression of the RPE key regulator microphthalmia-associated transcription factor (Mitf); however, neither factor is sufficient to promote Mitf expression in vivo. The study was conducted to determine whether Otx2 and β-catenin act in a combinatorial manner and tested whether co-expression in the presumptive chick retina induces ectopic Mitf expression. METHODS The sufficiency of Wnt/β-catenin activation and/or Otx2 expression to induce RPE-specific gene expression was examined in chick optic vesicle explant cultures or in the presumptive neural retina using in ovo-electroporation. Luciferase assays were used to examine the transactivation potentials of Otx2 and β-catenin on the Mitf-D enhancer and autoregulation of the Mitf-D and Otx2T0 enhancers. RESULTS In optic vesicles explant cultures, RPE-specific gene expression was activated by lithium chloride, a Wnt/β-catenin agonist. However, in vivo, Mitf was induced only in the presumptive retina if both β-catenin and Otx2 are co-expressed. Furthermore, both Mitf and Otx2 can autoregulate their own enhancers in vitro. CONCLUSIONS The present study provides evidence that β-catenin and Otx2 are sufficient, at least in part, to convert retinal progenitor cells into presumptive RPE cells expressing Mitf. Otx2 may act as a competence factor that allows RPE specification in concert with additional RPE-promoting factors such as β-catenin.
منابع مشابه
Otx2 Is Involved in the Regional Specification of the Developing Retinal Pigment Epithelium by Preventing the Expression of Sox2 and Fgf8, Factors That Induce Neural Retina Differentiation
The retinal pigment epithelium (RPE) shares its developmental origin with the neural retina (NR). When RPE development is disrupted, cells in the presumptive RPE region abnormally differentiate into NR-like cells. Therefore, the prevention of NR differentiation in the presumptive RPE area seems to be essential for regionalizing the RPE during eye development. However, its molecular mechanisms a...
متن کاملRetina regeneration in the chick embryo is not induced by spontaneous Mitf downregulation but requires FGF/FGFR/MEK/Erk dependent upregulation of Pax6
PURPOSE To elucidate the early cellular events that take place during induction of retina regeneration in the embryonic chick, focusing on the relationship between fibroblast growth factor (FGF) signaling and the regulation of Pax6 and Mitf. METHODS The retina of embryonic day 4 (E4) chicks was removed and a heparin coated bead soaked in fibroblast growth factor 2 (FGF2) was placed into the o...
متن کاملBone morphogenetic proteins specify the retinal pigment epithelium in the chick embryo.
In vertebrates, the neuroepithelium of the optic vesicle is initially multipotential, co-expressing a number of transcription factors that are involved in retinal pigment epithelium (RPE) and neural retina (NR) development. Subsequently, extrinsic signals emanating from the surrounding tissues induce the separation of the optic vesicle into three domains: the optic stalk/nerve, the NR and the R...
متن کاملIdentification of Wnt/β-catenin modulated genes in the developing retina
PURPOSE During mammalian eye development, the restriction of Wnt/β-catenin signaling at the junction of the neural retina and the retinal pigment epithelium in the peripheral eyecup is required for the development of the ciliary margin, a non-neural region of the eyecup that is the precursor of the ciliary body and iris of the adult eye. METHODS To identify genes that are modulated by β-caten...
متن کاملThe Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State
Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 51 10 شماره
صفحات -
تاریخ انتشار 2010