Interaction of Avibactam with Class B Metallo-β-Lactamases
نویسندگان
چکیده
β-Lactamases are the most important mechanisms of resistance to the β-lactam antibacterials. There are two mechanistic classes of β-lactamases: the serine β-lactamases (SBLs) and the zinc-dependent metallo-β-lactamases (MBLs). Avibactam, the first clinically useful non-β-lactam β-lactamase inhibitor, is a broad-spectrum SBL inhibitor, which is used in combination with a cephalosporin antibiotic (ceftazidime). There are multiple reports on the interaction of avibactam with SBLs but few such studies with MBLs. We report biochemical and biophysical studies on the binding and reactivity of avibactam with representatives from all 3 MBL subfamilies (B1, B2, and B3). Avibactam has only limited or no activity versus MBL-mediated resistance in pathogens. Avibactam does not inhibit MBLs and binds only weakly to most of the MBLs tested; in some cases, avibactam undergoes slow hydrolysis of one of its urea N-CO bonds followed by loss of CO2, in a process different from that observed with the SBLs studied. The results suggest that while the evolution of MBLs that more efficiently catalyze avibactam hydrolysis should be anticipated, pursuing the development of dual-action SBL and MBL inhibitors based on the diazabicyclooctane core of avibactam may be productive.
منابع مشابه
Interactions of OP0595, a Novel Triple-Action Diazabicyclooctane, with β-Lactams against OP0595-Resistant Enterobacteriaceae Mutants.
OP0595 is a novel diazabicyclooctane which, like avibactam, inhibits class A and C β-lactamases. In addition, unlike avibactam, it has antibacterial activity, with MICs of 0.5 to 4 μg/ml for most members of the family Enterobacteriaceae, owing to inhibition of PBP2; moreover, it acts synergistically with PBP3-active β-lactams independently of β-lactamase inhibition, via an "enhancer effect." En...
متن کاملCyclic Boronates Inhibit All Classes of β-Lactamases
β-Lactamase-mediated resistance is a growing threat to the continued use of β-lactam antibiotics. The use of the β-lactam-based serine-β-lactamase (SBL) inhibitors clavulanic acid, sulbactam, and tazobactam and, more recently, the non-β-lactam inhibitor avibactam has extended the utility of β-lactams against bacterial infections demonstrating resistance via these enzymes. These molecules are, h...
متن کاملIdentification of Novel VEB β-Lactamase Enzymes and Their Impact on Avibactam Inhibition.
Ceftazidime-avibactam has activity against Pseudomonas aeruginosa and Enterobacteriaceae expressing numerous class A and class C β-lactamases, although the ability to inhibit many minor enzyme variants has not been established. Novel VEB class A β-lactamases were identified during characterization of surveillance isolates. The cloned novel VEB β-lactamases possessed an extended-spectrum β-lacta...
متن کاملAssociation Between Metallo-β-lactamases and Integrons with Multi-Drug Resistance in Pseudomonas aeruginosa Isolates
Pseudomonas aeruginosa is among the most important pathogens in the nosocomial infections. A genetic mobile element, the integron, is one of the major agents involved in dissemination of multi-drug resistance among gram negative bacteria. During a descriptive study from October 2009 to August 2010, some 130 P. aeruginosa clinical isolates were collected from different wards of three hospitals...
متن کاملIdentification and Characterization of Metallo-β-Lactamases Producing Pseudomonas aeruginosa Clinical Isolates in University Hospital from Zanjan Province, Iran
Background: Infectious by Pseudomonas aeruginosa has spread worldwide and metallo-beta-lactamases (MBL) are being reported with increasing frequency. The aim of this study was to investigate the antibiotic susceptibility and distribution of blaVIM and blaIMP genes in P. aeruginosa isolates from Zanjan Province of Iran. Methods: A total of 70 P. aeruginosa isolates were identified from patients ...
متن کامل