Recent Progress in Development of Tnt1 Functional Genomics Platform for Medicago truncatula and Lotus japonicus in Bulgaria
نویسندگان
چکیده
Legumes, as protein-rich crops, are widely used for human food, animal feed and vegetable oil production. Over the past decade, two legume species, Medicago truncatula and Lotus japonicus, have been adopted as model legumes for genomics and physiological studies. The tobacco transposable element, Tnt1, is a powerful tool for insertional mutagenesis and gene inactivation in plants. A large collection of Tnt1-tagged lines of M. truncatula cv. Jemalong was generated during the course of the project 'GLIP': Grain Legumes Integrated Project, funded by the European Union (www.eugrainlegumes.org). In the project 'IFCOSMO': Integrated Functional and COmparative genomics Studies on the MOdel Legumes Medicago truncatula and Lotus japonicus, supported by a grant from the Ministry of Education, Youth and Science, Bulgaria, these lines are used for development of functional genomics platform of legumes in Bulgaria. This review presents recent advances in the evaluation of the M. truncatula Tnt1 mutant collection and outlines the steps that are taken in using the Tnt1-tagging for generation of a mutant collection of the second model legume L. japonicus. Both collections will provide a number of legume-specific mutants and serve as a resource for functional and comparative genomics research on legumes. Genomics technologies are expected to advance genetics and breeding of important legume crops (pea, faba bean, alfalfa and clover) in Bulgaria and worldwide.
منابع مشابه
Genetic basis of cytokinin and auxin functions during root nodule development
The phytohormones cytokinin and auxin are essential for the control of diverse aspects of cell proliferation and differentiation processes in plants. Although both phytohormones have been suggested to play key roles in the regulation of root nodule development, only recently, significant progress has been made in the elucidation of the molecular genetic basis of cytokinin action in the model le...
متن کاملLotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant-microbe interactions.
Symbiotic nitrogen fixation (SNF) in legume root nodules requires differentiation and integration of both plant and bacterial metabolism. Classical approaches of biochemistry, molecular biology, and genetics have revealed many aspects of primary metabolism in legume nodules that underpin SNF. Functional genomics approaches, especially transcriptomics and proteomics, are beginning to provide a m...
متن کاملMutagenesis and beyond! Tools for understanding legume biology.
The family Leguminosae is one of the largest families of flowering plants and includes important crop legumes such as soybean (Glycine max) and lentil (Lens culinaris) and forage legumes like alfalfa (Medicago sativa). Legumes vary in habit from annual to perennial and in their genomes from simple diploids to large and complex polyploids. Two legume species,Medicago truncatula and Lotus japonic...
متن کاملLegumeTFDB: an integrative database of Glycine max, Lotus japonicus and Medicago truncatula transcription factors
UNLABELLED We have established a database named LegumeTFDB to provide access to transcription factor (TF) repertoires of three major legume species: soybean (Glycine max), Lotus japonicus and Medicago truncatula. LegumeTFDB integrates unique information for each TF gene and family, including sequence features, gene promoters, domain alignments, gene ontology (GO) assignment and sequence compari...
متن کاملRecent Advances in Medicago truncatula Genomics
Legume rotation has allowed a consistent increase in crop yield and consequently in human population since the antiquity. Legumes will also be instrumental in our ability to maintain the sustainability of our agriculture while facing the challenges of increasing food and biofuel demand. Medicago truncatula and Lotus japonicus have emerged during the last decade as two major model systems for le...
متن کامل