Multi-objective Quadratic Assignment Problem Instances Generator with a Known Optimum Solution
نویسنده
چکیده
Multi-objective quadratic assignment problems (mQAPs) are NP-hard problems that optimally allocate facilities to locations using a distance matrix and several flow matrices. mQAPs are often used to compare the performance of the multi-objective meta-heuristics. We generate large mQAP instances by combining small size mQAP with known local optimum. We call these instances composite mQAPs, and we show that the cost function of these mQAPs is additively decomposable. We give mild conditions for which a composite mQAP instance has known optimum solution. We generate composite mQAP instances using a set of uniform distributions that obey these conditions. Using numerical experiments we show that composite mQAPs are difficult for multi-objective meta-heuristics.
منابع مشابه
Generating QAP instances with known optimum solution and additively decomposable cost function
Quadratic assignment problems (QAPs) is a NP-hard combinatorial optimization problem.QAPs are often used to compare the performance ofmeta-heuristics. In this paper, we propose aQAPproblem instance generator that can be used for benchmarking for heuristic algorithms. Our QAP generator combines small size QAPs with known optimum solution into a larger size QAP instance. We call these instances c...
متن کاملDifferent Network Performance Measures in a Multi-Objective Traffic Assignment Problem
Traffic assignment algorithms are used to determine possible use of paths between origin-destination pairs and predict traffic flow in network links. One of the main deficiencies of ordinary traffic assignment methods is that in most of them one measure (mostly travel time) is usually included in objective function and other effective performance measures in traffic assignment are not considere...
متن کاملRobust Quadratic Assignment Problem with Uncertain Locations
We consider a generalization of the classical quadratic assignment problem, where coordinates of locations are uncertain and only upper and lower bounds are known for each coordinate. We develop a mixed integer linear programming model as a robust counterpart of the proposed uncertain model. A key challenge is that, since the uncertain model involves nonlinear objective function of the ...
متن کاملEffective heuristics and meta-heuristics for the quadratic assignment problem with tuned parameters and analytical comparisons
Quadratic assignment problem (QAP) is a well-known problem in the facility location and layout. It belongs to the NP-complete class. There are many heuristic and meta-heuristic methods, which are presented for QAP in the literature. In this paper, we applied 2-opt, greedy 2-opt, 3-opt, greedy 3-opt, and VNZ as heuristic methods and tabu search (TS), simulated annealing, and pa...
متن کاملAn Algorithm for Construction of Test Cases for the Quadratic Assignment Problem
In this paper we present an algorithm for generating quadratic assignment problem (QAP) instances with known provably optimal solution. The flow matrix of such instances is constructed from the matrices corresponding to special graphs whose size may reach the dimension of the problem. In this respect, the algorithm generalizes some existing algorithms based on the iterative selection of triangl...
متن کامل