A cooperative framework for segmentation of MRI brain scans
نویسندگان
چکیده
Automatic segmentation of MRI brain scans is a complex task for two main reasons: the large variability of the human brain anatomy, which limits the use of general knowledge and, inherent to MRI acquisition, the artifacts present in the images that are difficult to process. To tackle these difficulties, we propose to mix, in a cooperative framework, several types of information and knowledge provided and used by complementary individual systems: presently, a multi-agent system, a deformable model and an edge detector. The outcome is a cooperative segmentation performed by a set of region and edge agents constrained automatically and dynamically by both, the specific gray levels in the considered image, statistical models of the brain structures and general knowledge about MRI brain scans. Interactions between the individual systems follow three modes of cooperation: integrative, augmentative and confrontational cooperation, combined during the three steps of the segmentation process namely, the specialization of the seeded-region-growing agents, the fusion of heterogeneous information and the retroaction over slices. The described cooperative framework allows the dynamic adaptation of the segmentation process to the own characteristics of each MRI brain scan. Its evaluation using realistic brain phantoms is reported.
منابع مشابه
Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملMRF Agent Based Segmentation: Application to MRI Brain Scans
The Markov Random Field (MRF) probabilistic framework is classically introduced for a robust segmentation of Magnetic Resonance Imaging (MRI) brain scans. Most MRF approaches handle tissues segmentation via global model estimation. Structure segmentation is then carried out as a separate task. We propose in this paper to consider MRF segmentation of tissues and structures as two local and coope...
متن کاملDynamic Adaptation of Cooperative Agents for MRI Brain Scans Segmentation
To cope with the difficulty of MRI brain scans automatic segmentation, we need to constrain and control the selection and the adjustment of processing tools depending on the local image characteristics. To extract domain and control knowledge from the image, we propose to use situated cooperative agents whose dedicated behavior, i.e. segmentation of one type of tissue, is dynamically adapted wi...
متن کاملImproving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کاملA Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis
Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artificial intelligence in medicine
دوره 20 1 شماره
صفحات -
تاریخ انتشار 2000