An asymptotic equipartition property for measures on model spaces

نویسنده

  • Tim Austin
چکیده

Let G be a sofic group, and let Σ “ pσnqně1 be a sofic approximation to it. For a probability-preserving G-system, a variant of the sofic entropy relative to Σ has recently been defined in terms of sequences of measures on its model spaces that ‘converge’ to the system in a certain sense. Here we prove that, in order to study this notion, one may restrict attention to those sequences that have the asymptotic equipartition property. This may be seen as a relative of the Shannon– McMillan theorem in the sofic setting. We also give some first applications of this result, including a new formula for the sofic entropy of a pGˆHq-system obtained by co-induction from a G-system, whereH is any other infinite sofic group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tropical Limits of Probability Spaces, Part I: The Intrinsic Kolmogorov-Sinai Distance and the Asymptotic Equipartition Property for Configurations

The entropy of a finite probability space X measures the observable cardinality of large independent products X of the probability space. If two probability spaces X and Y have the same entropy, there is an almost measure-preserving bijection between large parts of X and Y . In this way, X and Y are asymptotically equivalent. It turns out to be challenging to generalize this notion of asymptoti...

متن کامل

Lossy Asymptotic Equipartition property for Networked Data Structures

Abstract. This paper presents a rate-distortion theory for hierarchical networked data structures modelled as tree-indexed multitype process. To be specific, this paper gives a generalized Asymptotic Equipartition Property (AEP) for the Process. The general methodology of proof of the AEP are process level large deviation principles for suitably defined empirical measures for muiltitype Galton-...

متن کامل

Lossy Asymptotic Equipartition Property For Geometric Networked Data Structures

Abstract. This article extends the Generalized Asypmtotic Equipartition Property of Networked Data Structures to cover the Wireless Sensor Network modelled as coloured geometric random graph (CGRG). The main techniques used to prove this result remains large deviation principles for properly defined empirical measures on coloured geometric random graphs. Application of the result to some case s...

متن کامل

Dimensional behaviour of entropy and information

We develop an information-theoretic perspective on some questions in convex geometry, providing for instance a new equipartition property for log-concave probability measures, some Gaussian comparison results for log-concave measures, an entropic formulation of the hyperplane conjecture, and a new reverse entropy power inequality for log-concave measures analogous to V. Milman’s reverse Brunn-M...

متن کامل

On The Construction of Zero Energy States in Supersymmetric Matrix Models III

For a supersymmetric Hamiltonian appearing in the matrix model related to 11 dimensional supermembranes, zero energy states are constructed. A useful symmetry, and an energy-equipartition property is pointed out.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1701.08723  شماره 

صفحات  -

تاریخ انتشار 2017