SIGMAR: A Fuzzy Expert System for Critiquing Marine Forecasts

نویسنده

  • Bjarne Hansen
چکیده

Meteorological information and knowledge are often uncertain, ambiguous, or vaguely defined. Fuzzy logic lets expert systems perform optimally with uncertain or ambiguous data and knowledge. With a fuzzy logic framework, one can efficiently implement linguistically expressed rules derived from experts. Operational meteorology is therefore treated as a fuzzy environment. An argument is made for the applicability of methods based on fuzzy logic for the optimal solution of problems related to the evaluation of meteorological data and forecasts. An expert system, SIGMAR, has been designed which uses fuzzy methods to interpret meteorological data. The system automatically evaluates the significance of actual wind reports. Two activities that challenge weather forecasters are coping with information overload and maintaining accuracy of forecasts. Both tasks can be performed more easily and consistently with SIGMAR. The system efficiently identifies significant information contained within huge amounts of data. Forecasters using the system can more consistently and easily monitor the accuracy of weather forecasts. Systems such as that described here are bound to become more common as time goes on.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fuzzy case-based system for weather prediction

Weather forecasting is a complex process that involves numerous specialized fields of expertise. The output from computationally intensive numerical weather prediction (NWP) models forms the starting point of the forecasting process. Expert forecasters have both a general knowledge of large-scale weather systems and specific knowledge about the idiosyncratic behavior of local scale weather phen...

متن کامل

A fuzzy logic expert system to estimate intrinsic extinction vulnerabilities of marine fishes to fishing

Fishing has become a major conservation threat to marine fishes. Effective conservation of threatened species requires timely identification of vulnerable species. However, evaluation of extinction risk using conventional methods is difficult for the majority of fish species because the population data normally required by such methods are unavailable. This paper presents a fuzzy expert system ...

متن کامل

A Fuzzy Logic Expert System for Estimating the Intrinsic Extinction Vulnerabilities of Seamount Fishes to Fishing

Fishing has become a major conservation threat to marine fishes. Effective conservation of threatened species requires timely identification of vulnerable species. However, evaluation of extinction risk using conventional methods is difficult for the majority of fish species as the population data normally required by such methods are unavailable. This paper presents a fuzzy expert system that ...

متن کامل

DESIGN AND IMPLEMENTATION OF FUZZY EXPERT SYSTEM FOR REAL ESTATE RECOMMENDATION

<span style="color: #000000; font-family: Tahoma, sans-serif; font-size: 13px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; display: inline !important; float: none; backgro...

متن کامل

DESIGN AND IMPLEMENTATION OF FUZZY EXPERT SYSTEM FOR REAL ESTATE RECOMMENDATION

<span style="color: #000000; font-family: Tahoma, sans-serif; font-size: 13px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; display: inline !important; float: none; backgro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997