Observation of Large-Scale Multi-Agent Based Simulations
نویسندگان
چکیده
The computational cost of large-scale multi-agent based simulations (MABS) can be extremely important, especially if simulations have to be monitored for validation purposes. In this paper, two methods, based on self-observation and statistical survey theory, are introduced in order to optimize the computation of observations in MABS. An empirical comparison of the computational cost of these methods is performed on a toy problem.
منابع مشابه
Optimal Design of FPI^λ D^μ based Stabilizers in Hybrid Multi-Machine Power System Using GWO Algorithm
In this paper, the theory and modeling of large scale photovoltaic (PV) in the power grid and its effect on power system stability are studied. In this work, the basic module, small signal modeling and mathematical analysis of the large scale PV jointed multi-machine are demonstrated. The principal portion of the paper is to reduce the low frequency fluctuations by tuned stabilizer in the atten...
متن کاملOPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING MODIFIED CHARGED SYSTEM SEARCH
Optimal design of large-scale structures is a rather difficult task and the computational efficiency of the currently available methods needs to be improved. In view of this, the paper presents a modified Charged System Search (CSS) algorithm. The new methodology is based on the combination of CSS and Particle Swarm Optimizer. In addition, in order to improve optimization search, the sequence o...
متن کاملDistributed multi-agent Load Frequency Control for a Large-scale Power System Optimized by Grey Wolf Optimizer
This paper aims to design an optimal distributed multi-agent controller for load frequency control and optimal power flow purposes. The controller parameters are optimized using Grey Wolf Optimization (GWO) algorithm. The designed optimal distributed controller is employed for load frequency control in the IEEE 30-bus test system with six generators. The controller of each generator is consider...
متن کاملA Holonic Approach to Model and Deploy Large Scale Simulations
Multi-Agent Based Simulations (MABS) for real-world problems may require a large number of agents. A possible solution is to distribute the simulation in multiple machines. Thus, we are forced to consider how Large Scale MABS can be deployed in order to have an efficient system. Even more, we need to consider how to cluster those agents in the different execution servers. In this paper we propo...
متن کاملA New Compromise Decision-making Model based on TOPSIS and VIKOR for Solving Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty
This paper proposes a compromise model, based on a new method, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. In this compromise programming method, two concepts are considered simultaneously. First of them is that the optimal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011