A unified approach to identification of linear SISO models subject to missing output data and missing input data, Report no. LiTH-ISY-R-3014

نویسندگان

  • Ragnar Wallin
  • Anders Hansson
  • RagnarWallin Anders
چکیده

When output data is missing in a system identi cation scenario, it is not the Euclidean norm of the prediction error vector per se that should be minimized. Doing so will almost always yield biased parameter estimates. Two algorithms for estimation of the parameters, which can handle both missing output data and missing input data, are presented. The criterion minimized in the algorithms is the Euclidean norm of the prediction error vector scaled by a particular function of the covariance matrix of the observed output data. The algorithms yield a maximum likelihood estimate of the parameters under certain conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Likelihood Estimation of Gaussian Models with Missing Data—Eight Equivalent Formulations, Report no. LiTH-ISY-R-3013

In this paper we derive the maximum likelihood problem for missing data from a Gaussian model. We present in total eight di erent equivalent formulations of the resulting optimization problem, four out of which are nonlinear least squares formulations. Among these formulations are also formulations based on the expectation-maximization algorithm. Expressions for the derivatives needed in order ...

متن کامل

Particle Filter Approach to Nonlinear System Identification under Missing Observations with a Real Application, Report no. LiTH-ISY-R-2895

This article reviews authors' recently developed algorithm for identi cation of nonlinear state-space models under missing observations and extends it to the case of unknown model structure. In order to estimate the parameters in a state-space model, one needs to know the model structure and have an estimate of states. If the model structure is unknown, an approximation of it is obtained using ...

متن کامل

استفاده از داده‌های اقلیمی جهانی برای بازسازی خلأهای آماری داده‌های دما و بارش (مطالعۀ موردی: ایستگاه‌های حوزۀ آبخیز خانمیرزا)

Introduction: Due to importance of data quality, issues relating to filling the missing data has found a great deal of interest. Regeneration methods for missing data can be classified into two kinds of classical and modern categories. Application of statistical methods such as relationship with nearby stations and approaches on the base of hydrological, climatological or physiographical simila...

متن کامل

DEA with Missing Data: An Interval Data Assignment Approach

In the classical data envelopment analysis (DEA) models, inputs and outputs are assumed as known variables, and these models cannot deal with unknown amounts of variables directly. In recent years, there are few researches on handling missing data. This paper suggests a new interval based approach to apply missing data, which is the modified version of Kousmanen (2009) approach. First, the prop...

متن کامل

کاربرد متدولوژی ترکیبی تحلیل پوششی داده‌ها و ماتریس درجه ترجیح در ارزیابی واحدهای تصمیم گیری با رویکرد فازی

Data envelopment analysis (DEA) has been a very popular method for measuring and benchmarking relative efficiency of peer decision making units (DMUs) with multiple input and outputs. Traditional data envelopment analysis (DEA) models require crisp input and output data. In real world situations, however, crisp input and output data may not always be available, especially when a set of decision...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011