NRG1, a CC-NB-LRR Protein, together with N, a TIR-NB-LRR Protein, Mediates Resistance against Tobacco Mosaic Virus

نویسندگان

  • Jack R. Peart
  • Pere Mestre
  • Rui Lu
  • Isabelle Malcuit
  • David C. Baulcombe
چکیده

In animals and plants, innate immunity is regulated by nucleotide binding domain and leucine-rich repeat (NB-LRR) proteins that mediate pathogen recognition and that activate host-cell defense responses. Plant NB-LRR proteins, referred to as R proteins, have amino-terminal domains that contain a coiled coil (CC) or that share similarity with animal Toll and interleukin 1 receptors (TIR). To investigate R protein function, we are using the TIR-NB-LRR protein N that mediates resistance against tobacco mosaic virus (TMV) through recognition of the TMV p50 protein. Here, we describe N requirement gene 1 (NRG1), a novel N-resistance component that was identified by a virus-induced gene silencing (VIGS) screen of a cDNA library. Surprisingly, NRG1 encodes an NB-LRR type R protein that, in contrast to N, contains a CC rather than a TIR domain. Our findings support emerging evidence that many disease-resistance pathways each recruit more than a single NB-LRR protein. The results also indicate that, in addition to the previously recognized role in elicitor recognition, NB-LRR proteins may also function in downstream signaling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Positive Regulatory Role for the SPL6 Transcription Factor in the N TIR-NB-LRR Receptor-Mediated Plant Innate Immunity

Following the recognition of pathogen-encoded effectors, plant TIR-NB-LRR immune receptors induce defense signaling by a largely unknown mechanism. We identify a novel and conserved role for the SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-domain transcription factor SPL6 in enabling the activation of the defense transcriptome following its association with a nuclear-localized immune receptor. Durin...

متن کامل

Chloroplastic Protein NRIP1 Mediates Innate Immune Receptor Recognition of a Viral Effector

Plant innate immunity relies on the recognition of pathogen effector molecules by nucleotide-binding-leucine-rich repeat (NB-LRR) immune receptor families. Previously we have shown the N immune receptor, a member of TIR-NB-LRR family, indirectly recognizes the 50 kDa helicase (p50) domain of Tobacco mosaic virus (TMV) through its TIR domain. We have identified an N receptor-interacting protein,...

متن کامل

Emerging role of SGT1 as a regulator of NB-LRR-receptor nucleocytoplasmic partitioning

Plant nucleotide-binding (NB) and leucine-rich repeat (LRR) receptors mediate effector-triggered immunity. Two major classes of NB-LRR proteins are involved in this process, namely, toll-interleukin receptor (TIR)-NB-LRR and coiled coil (CC)-NB-LRR proteins. Recent reports show that some of the TIR-NB-LRRs and CC-NB-LRRs localize to the cytoplasm and nucleus. Equilibrium between these pools is ...

متن کامل

The coiled-coil and nucleotide binding domains of the Potato Rx disease resistance protein function in pathogen recognition and signaling.

Plant genomes encode large numbers of nucleotide binding and leucine-rich repeat (NB-LRR) proteins, some of which mediate the recognition of pathogen-encoded proteins. Following recognition, the initiation of a resistance response is thought to be mediated by the domains present at the N termini of NB-LRR proteins, either a Toll and Interleukin-1 Receptor or a coiled-coil (CC) domain. In order ...

متن کامل

Fine Mapping and Candidate Gene Discovery at the Rsv 3 Locus

The Soybean mosaic virus (SMV) resistance locus, Rsv3, previously mapped between markers A519F/R and M3Satt in the soybean molecular linkage group B2 (chromosome 14), has been characterized by examination of the soybean genome sequence. The 154 kbp interval encompassing Rsv3 contains a family of closely related coiled-coil nucleotide-binding leucine-rich repeat (CC-NB-LRR) genes. Tightly linked...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2005