Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation.

نویسندگان

  • Andrew P VanDemark
  • Margaret M Kasten
  • Elliott Ferris
  • Annie Heroux
  • Christopher P Hill
  • Bradley R Cairns
چکیده

An important issue for chromatin remodeling complexes is how their bromodomains recognize particular acetylated lysine residues in histones. The Rsc4 subunit of the yeast remodeler RSC contains an essential tandem bromodomain (TBD) that binds acetylated K14 of histone H3 (H3K14ac). We report a series of crystal structures that reveal a compact TBD that binds H3K14ac in the second bromodomain and, remarkably, binds acetylated K25 of Rsc4 itself in the first bromodomain. Endogenous Rsc4 is acetylated only at K25, and Gcn5 is identified as necessary and sufficient for Rsc4 K25 acetylation in vivo and in vitro. Rsc4 K25 acetylation inhibits binding to H3K14ac, and mutation of Rsc4 K25 results in altered growth rates. These data suggest an autoregulatory mechanism in which Gcn5 performs both the activating (H3K14ac) and inhibitory (Rsc4 K25ac) modifications, perhaps to provide temporal regulation. Additional regulatory mechanisms are indicated as H3S10 phosphorylation inhibits Rsc4 binding to H3K14ac peptides.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14.

The coordination of chromatin remodeling with chromatin modification is a central topic in gene regulation. The yeast chromatin remodeling complex RSC bears multiple bromodomains, motifs for acetyl-lysine and histone tail interaction. Here, we identify and characterize Rsc4 and show that it bears tandem essential bromodomains. Conditional rsc4 bromodomain mutations were isolated, and were letha...

متن کامل

Site-specific acetylation mark on an essential chromatin-remodeling complex promotes resistance to replication stress.

Recent work has identified several posttranslational modifications (PTMs) on chromatin-remodeling complexes. Compared with our understanding of histone PTMs, significantly less is known about the functions of PTMs on remodeling complexes, because identification of their specific roles often is hindered by the presence of redundant pathways. Remodels the Structure of Chromatin (RSC) is an essent...

متن کامل

Acetylation-Dependent Binding Analysis of the Yeast Gcn5 Bromodomain Protein

The 439 amino acid yeast Gcn5 protein contains a C-terminal bromodomain, which is required for SAGA (Spt-Ada-Gcn5-Acetyltransferase) mediated nucleosomal acetylation and transcriptional coactivation. Bromodomains are acetyl-lysine binding modules found in many chromatin binding proteins and histone acetyltransferases. Recently, both in vivo and in vitro studies indicate that bromodomains are ab...

متن کامل

Function and Selectivity of Bromodomains in Anchoring Chromatin-Modifying Complexes to Promoter Nucleosomes

The functions of the SAGA and SWI/SNF complexes are interrelated and can form stable "epigenetic marks" on promoters in vivo. Here we show that stable promoter occupancy by SWI/SNF and SAGA in the absence of transcription activators requires the bromodomains of the Swi2/Snf2 and Gcn5 subunits, respectively, and nucleosome acetylation. This acetylation can be brought about by either the SAGA or ...

متن کامل

Histone acetyltransferase activity and interaction with ADA2 are critical for GCN5 function in vivo.

Yeast GCN5 is one component of a putative adaptor complex that includes ADA2 and ADA3 and functionally connects DNA-bound transcriptional activators with general transcription factors. GCN5 possesses histone acetyltransferase (HAT) activity, conceptually linking transcriptional activation with enzymatic modification at chromatin. We have identified the minimal catalytic domain within GCN5 neces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 27 5  شماره 

صفحات  -

تاریخ انتشار 2007