Intragenomic repair heterogeneity of DNA damage.

نویسندگان

  • D A Scicchitano
  • P C Hanawalt
چکیده

The mutagenic and carcinogenic consequences of unrepaired DNA damage depend upon its precise location with respect to the relevant genomic sites. Therefore, it is important to learn the fine structure of DNA damage, in particular, proto-oncogenes, tumor-suppressor genes, and other DNA sequences implicated in tumorigenesis. Both the introduction and the repair of many types of DNA lesions are heterogeneous with respect to chromatin structure and/or gene activity. For example, cyclobutane pyrimidine dimers are removed more efficiently from the transcribed than the nontranscribed strand of the dhfr gene in Chinese hamster ovary cells. In contrast, preferential strand repair of alkali-labile sites is not found at this locus. In mouse 3T3 cells, dimers are more efficiently removed from an expressed proto-oncogene than from a silent one. Persistent damage in nontranscribed domains may account for genomic instability in those regions, particularly during cell proliferation as lesions are encountered by replication forks. The preferential repair of certain lesions in the transcribed strands of active genes results in a bias toward mutagenesis owing to persistent lesions in the nontranscribed strands. Risk assessment in environmental genetic toxicology requires assays that determine effective levels of DNA damage of producing malignancy. The existence of nonrandom repair in the mammalian genome casts doubt on the reliability of overall indicators of carcinogen-DNA binding and lesion repair for such determinations. Tissue-specific and cell-specific differences in the coordinate regulation of gene expression and DNA repair may account for corresponding differences in the carcinogenic response to particular environmental agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of intragenomic DNA repair heterogeneity with cellular differentiation.

The influence of terminal differentiation on UV-induced DNA damage and its repair in transcriptionally active and inactive genomic sequences was investigated using the murine 3T3-T proadipocyte cell culture system. Actively cycling 3T3-T cells terminally differentiate into adipocytes after exposure to media containing platelet-depleted human plasma. Suitable DNA fragments were analyzed from fou...

متن کامل

Preferential DNA repair in expressed genes.

Potentially deleterious alterations to DNA occur nonrandomly within the mammalian genome. These alterations include the adducts produced by many chemical carcinogens, but not the UV-induced cyclobutane pyrimidine dimer, which may be an exception. Recent studies in our laboratory have shown that the excision repair of pyrimidine dimers and certain other lesions is nonrandom in the mammalian geno...

متن کامل

Studies on electron beam induced DNA damage and repair kinetics in lymphocytes by alkaline comet assay

Background: Exposure to ionizing radiation is known to induce oxidative stress followed by damage to critical biomolecules like lipids, proteins and DNA through radiolysis of cellular water. Since radiation has been widely used as an important tool in therapy of cancer, the detailed investigation regarding the DNA damage and repair kinetics would help to predict the radiation sensitivity of cel...

متن کامل

Factors influencing heterogeneity of radiation-induced DNA-damage measured by the alkaline comet assay

BACKGROUND To investigate whether different conditions of DNA structure and radiation treatment could modify heterogeneity of response. Additionally to study variance as a potential parameter of heterogeneity for radiosensitivity testing. METHODS Two-hundred leukocytes per sample of healthy donors were split into four groups. I: Intact chromatin structure; II: Nucleoids of histone-depleted DN...

متن کامل

OGG1 DNA Repair Gene Polymorphism As a Biomarker of Oxidative and Genotoxic DNA Damage

Background: Single nucleotide polymorphisms in 8-oxoguanine DNA glycosylase-1 (OGG1) gene modulates DNA repair capacity and functions as one of the first lines of protective mechanisms against 8-hydroxy-2’-deoxyguanosine (8-OHdG) mutagenicity. OGG1-Cys326 gene polymorphism may decrease DNA repair function, causing oxidative stress due to higher oxidative DNA damage. The main purpose of this stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 98  شماره 

صفحات  -

تاریخ انتشار 1992