Texture Feature Extraction for Land-cover Classification of Remote Sensing Data in Land Consolidation District Using Semi-variogram

نویسندگان

  • Anzhi Yue
  • Su Wei
  • Daoliang Li
  • Chao Zhang
  • Yan Huang
چکیده

The area of land consolidation projects are generally small, so remote sensing images used in land cover classification are generally of high resolution. The spectral characteristics of the high-resolution remote sensing data are unstable, while the texture feature is prominent. In view of this issue, this paper study the spatial relation between the adjacent pixels in the remote sensing image, and selected the lag distance of the semi-variogram that is determined when the value of the semi-variogram tended to be constant as the cooccurrence window size. Sometimes the window size is the most important influencing factor in the texture feature extraction process. Moreover, under the restraint of the classification results, this paper introduces a method to compute the co-occurrence features with a timely changeable co-occurrence window size according to the semi-variogram analysis. This paper takes Zhaoquanying land consolidation project located at Beijing Shunyi District as an example, the texture feature is extracted from SPOT5 remote sensing data of land consolidation project area in the TitanImage secondary development environment. The results show that the classification accuracy has improved. Key-Words: Semi-variogram, Land Consolidation, Texture feature, Classification

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Texture feature Extraction for Land-cover Classification of Remote Sensing Data in Land Consolidation District Using Semi-variogram analysis

The areas of the land consolidation projects are generally small, so the remote sensing images used in land-cover classification for the land consolidation are generally high spatial resolution images. The spectral complexity of land consolidation objects results in specific limitation using pixel-based analysis for land cover classification such as farmland, woodland, and water. Considering th...

متن کامل

Evaluation of Land Cover Changes Ysing Remote Sensing Technique (Case study: Hableh Rood Subwatershed of Shahrabad Basin)

The growing population and increasing socio-economic necessities creates a pressure on land use/land cover. Nowadays, land use change detection using remote sensing data provides quantitative and timely information for management and evaluation of natural resources. This study investigates the land use changes in part of Hableh Rood Watershed of Iran using Landsat 7 and 8 (Sensor ETM+ and OLI) ...

متن کامل

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

Application of remote sensing and geographical information system in mapping land cover of the national park

The study was conducted with the objective of mapping landscape cover of Nechsar National park in Ethiopia to produce spatially accurate and timely information on land use and changing pattern. Monitoring provides the planners and decision-makers with required information about the current state of its development and the nature of changes that have occurred. Remote sensing and Geographical Inf...

متن کامل

Land Cover Classification Using IRS-1D Data and a Decision Tree Classifier

Land cover is one of basic data layers in geographic information system for physical planning and environmentalmonitoring. Digital image classification is generally performed to produce land cover maps from remote sensing data,particularly for large areas. In the present study the multispectral image from IRS LISS-III image along with ancillary datasuch as vegetation indices, principal componen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008