Differential-Absorption Lidar for Ozone and Industrial Emissions
نویسنده
چکیده
s ofPapers. Sendai, Japan, July 25–29, 1994. (Sendai International Center, Sendai, Japan 1994), p. 392 [10] S. Godin, A.I. Carswell, D.P. Donovan, et al.: Appl. Opt. 38, 6225 (1999) [11] C. Weitkamp, G. Baumbach, H. Becker, et al.: Gefahrstoffe-Reinhaltung der Luft 60, 279 (2000)[12] M.H. Proffitt, A.O. Langford: Appl. Opt. 36, 2568 (1997)[13] C. Weitkamp, O. Thomsen, P. Bisling: Laser und Optoelektonik 24 (2), 42 (1992)[14] M. Griggs: J. Chem. Phys. 49, 857 (1968) [15] C. Senff: private communication 2001 [16] L.T. Molina, M.J. Molina: J. Geophys. Res. 91, 14,501 (1986)[17] K. Fredriksson, B. Galle, K. Nystrom, et al.: Appl. Opt. 20, 4181 (1981)[18] H. Edner, K. Fredriksson, A. Sunesson, et al.: Appl. Opt. 26, 4330 (1987)[19] A.-L. Egebeck, K.A. Fredriksson, H.M. Hertz: Appl. Opt. 23, 722 (1984)[20] H. Edner, K. Fredriksson, A. Sunesson, et al.: Appl. Opt. 26, 3183 (1987)[21] H. Edner, G.W. Faris, A. Sunesson, et al.: Appl. Opt. 28, 921 (1989)[22] P. Weibring, H. Edner, S. Svanberg: Appl. Opt. 42, 3583 (2003) [23] U.-B. Goers, P. Bisling, J. Glauer, et al.: ARGOS: A Differential Absorption Lidar for the Depth-Resolving Measurement of Sulfur Dioxide, Nitrogen Dioxide, and Ozone. In Air Pollution Part II—Analysis, Monitoring, Management and 7 Differential-Absorption Lidar for Ozone and Industrial Emissions 211 Engineering, ed. by P. Zanetti, C.-A. Brebbia, J.E. Garcia Gardea, G. Ayala Milian (Computation Mechanics Publications, Boston 1993), p. 487[24] U.-B. Goers: Opt. Eng. 34, 3097 (1995)[25] Y. Zhao, R.D. Marchbanks, R.M. Hardesty: Proc. SPIE 3127, 53 (1997)[26] Y. Zhao, R.M. Hardesty, M.J. Post: Appl. Opt. 45, 7623 (1992)[27] Y. Zhao, J.N. Howell, R.M. Hardesty: Proc SPIE 2112, 310 (1993)[28] W. Carnuth, U. Kempfer, T. Trickl: Tellus 54 B, 163 (2002)[29] A. Fix, M. Wirth, A. Meister, et al.: Appl. Phys. B 75, 153 (2002)[30] J.T. Zenker, T.H. Chyba, C.L. McCray, et al.: Proc. SPIE 3707, 541 (1999)[31] J.M. Stewart, G.G. Gimmestad, D.W. Roberts, et al.: Proc. SPIE 4723, 172 (2002) [32] G.G. Gimmestad, E.M. Patterson, D.W. Roberts, et al.: Proc. IEEE Int. Geosci. Remote Sensing Symp. Sydney, Australia (2001)[33] W. Schneider, et al.: J. Photochem. Photobiol. 40, 195 (1987)[34] N. Takeuchi, H. Shimizu, M. Okuda: Appl. Opt. 17, 2734 (1978)[35] W. Staehr, W. Lahmann, C. Weitkamp: Appl. Opt. 24, 1950 (1985)[36] H.J. Kölsch, P. Rairoux, J.P. Wolf, et al.: Appl. Opt. 28, 2052 (1989) [37] D.P.J. Swart, J.B. Bergwerff: In Fifteenth International Laser Radar Conference. Abstracts of Papers. Tomsk, USSR, July 23–27, 1990. (Institute Atmospherics of Papers. Tomsk, USSR, July 23–27, 1990. (Institute Atmospheric Optics, Tomsk, USSR 1990), Part 1, p. 80. [38] C.N. de Jonge, J.B. Bergwerff, D.P.J. Swart: Using DIAL to Measure Freeway Traffic NO2 Emissions. In Proceedings of the Optical Remote Sensing of theAtmosphere Topical Meeting, Williamsburg, VA (1991), p. 250[39] K. Fritzsche, G. Schubert: Laser und Optoelektronik 29 (5), 56 (1997)[40] R. Toriumi, H. Tai, N. Takeuchi: Opt. Eng 35, 2371 (1996)[41] J. Yu, P. Rambaldi, J.-P. Wolf: Appl. Opt. 36, 6864 (1997)[42] T. Nayuki, T. Fukuchi, N. Cao, et al.: Appl. Opt. 41, 3659 (2002)[43] T. Fukuchi, T. Nayuki, N. Cao, et al.: Opt. Eng. 42, 98 (2003) [44] C. Weitkamp, H.J. Heinrich, W. Herrmann, et al.: Measurement of hydrogen chloride in the plume of incineration ships. InAsociacion Argentina contra la Contaminacion del Aire, ed.: Proceedings of the 5th International Clean Air Congress, 20–26 October 1980, Buenos Aires, Argentina (1980), p. 657[45] N. Menyuk, D.K. Killinger: Appl. Opt. 26, 3061 (1987) [46] M.J.T. Milton, P.T. Woods, B.W. Joliffe, et al.: In Sixteenth International Laser Radar Conference. Abstracts of papers presented at a conference and held in Cambridge, Massachusetts, July 20–24, 1992.M.P. McCormick, ed. NASA Conference Publication 3158. Part 2, p. 711[47] R.A. Robinson, P.T. Woods, M.J.T. Milton: Proc. SPIE 2506, 140 (1995) [48] M. Uchiumi, O. Chee, K. Muraoka, et al.: In 17th International Laser Radar Conference. Abstracts of Papers. Sendai, Japan, July 25–29, 1994. (Sendai International Center, Sendai, Japan 1994), p. 31[49] P.F. Ambrico, A. Amodeo, P.D. Girolamo, et al.: Appl. Opt. 39, 6847 (2000)[50] J.R. Quagliano, P.O. Stoutland, R.R. Petrin, et al.: Appl. Opt. 36, 1915 (1997)[51] H. Ahlberg, S. Lundqvist, B. Olsson: Appl. Opt. 24, 3924 (1985)[52] A.P. Force, D.K. Killinger, W.E. DeFeo, et al.: Appl. Opt. 24, 2837 (1985)[53] C.B. Carlisle, J.E. van der Laan, L.W. Carr, et al.: Appl. Opt. 34, 6187 (1995)[54] R. Barbini, F. Colao, G. D’Auria, et al.: Proc. SPIE 3104, 167 (1997)[55] Y. Zhao, W.A. Brewer, W.L. Eberhard, et al.: J. Atmos. Ocean Tech. 19, 1928
منابع مشابه
An investigation of ozone and planetary boundary layer dynamics over the complex topography of Grenoble combining measurements and modeling
This paper concerns an evaluation of ozone (O3) and planetary boundary layer (PBL) dynamics over the complex topography of the Grenoble region through a combination of measurements and mesoscale model (METPHOMOD) predictions for three days, during July 1999. The measurements of O3 and PBL structure were obtained with a Differential Absorption Lidar (DIAL) system, situated 20 km south of Grenobl...
متن کاملLidar Measurements of Ozone in the Upper Troposphere – Lower Stratosphere at Siberian Lidar Station in Tomsk
The paper presents the results of DIAL measurements of the vertical ozone distribution at the Siberian lidar station. Sensing is performed according to the method of differential absorption and scattering at wavelength pair of 299/341 nm, which are, respectively, the first and second Stokes components of SRS conversion of 4th harmonic of Nd:YAG laser (266 nm) in hydrogen. Lidar with receiving m...
متن کاملLidar measurements of ozone vertical profiles.
Remote measurements of trace constituents using an active technique such as lidar have been made possible for the rapid development of powerful tunable laser sources. This paper, originally presented at the OSA Topical Meeting on Optical Remote Sensing of the Atmosphere, in January 1985, illustrates the differential absorption lidar technique used for the measurement of the ozone vertical distr...
متن کاملIntercomparison of Ozone Vertical Profile Measurements by Differential Absorption Lidar and IASI/MetOp Satellite in the Upper Troposphere-Lower Stratosphere
This paper introduces the technique of retrieving the profiles of vertical distribution of ozone considering temperature and aerosol correction in DIAL sounding of the atmosphere. The authors determine wavelengths, which are promising for measurements of ozone profiles in the upper troposphere–lower stratosphere. An ozone differential absorption lidar is designed for the measurements. The resul...
متن کاملSampling of an STT event over the Eastern Mediterranean region by lidar and electrochemical sonde
A two-wavelength ultraviolet (289–316 nm) ozone Differential Absorption Lidar (DIAL) system is used to perform ozone measurements in the free troposphere in the Eastern Mediterranean (Northern Greece). The ozone DIAL profiles obtained during a Stratosphere-toTroposphere Transport (STT) event are compared to that acquired by an electrochemical ozonesonde, in the altitude range between 2 and 10 k...
متن کاملDifferential Absorption Lidar (DIAL) Measurements of Landfill Methane Emissions
Methane is one of the most important gaseous hydrocarbon species for both industrial and environmental reasons. Understanding and quantifying methane emissions to atmosphere is therefore an important element of climate change research. Range-resolved infrared differential absorption Lidar (DIAL) measurements provide the means to map and quantify a wide range of different methane sources. This p...
متن کامل