Set Intersections, Perfect Graphs, and Voting in Agreeable Societies
نویسندگان
چکیده
When is agreement possible? An important aspect of group decision-making is the question of how a group makes a choice when individual preferences may differ. Clearly, people cannot all have their “ideal” preferences, i.e, the options that they most desire, if those ideal preferences are different. However, for the sake of agreement, people may be willing to accept as a group choice an option that is merely “close” to their ideal preferences. A good example of such a situation is voting for candidates along a political spectrum. We normally think of this spectrum as one-dimensional, with conservative positions on the right and liberal positions on the left, as in Figure 1. While we may represent our ideal preference at some point x on this interval, we might be willing to vote for a candidate that positions himself at some point close to x.
منابع مشابه
Approval Voting in Box Societies
Under approval voting, every voter may vote for any number of candidates. To model approval voting, we let a political spectrum be the set of all possible political positions, and let each voter have a subset of the spectrum that they approve, called an approval region. The fraction of all voters who approve the most popular position is the agreement proportion for the society. We consider voti...
متن کاملTotal perfect codes, OO-irredundant and total subdivision in graphs
Let $G=(V(G),E(G))$ be a graph, $gamma_t(G)$. Let $ooir(G)$ be the total domination and OO-irredundance number of $G$, respectively. A total dominating set $S$ of $G$ is called a $textit{total perfect code}$ if every vertex in $V(G)$ is adjacent to exactly one vertex of $S$. In this paper, we show that if $G$ has a total perfect code, then $gamma_t(G)=ooir(G)$. As a consequence, ...
متن کاملAnti-forcing number of some specific graphs
Let $G=(V,E)$ be a simple connected graph. A perfect matching (or Kekul'e structure in chemical literature) of $G$ is a set of disjoint edges which covers all vertices of $G$. The anti-forcing number of $G$ is the smallest number of edges such that the remaining graph obtained by deleting these edges has a unique perfect matching and is denoted by $af(G)$. In this paper we consider some specifi...
متن کاملPerfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملPerfect $2$-colorings of the Platonic graphs
In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and the icosahedral graph.
متن کامل