Anisotropic vanadium dioxide sculptured thin films with superior thermochromic properties

نویسندگان

  • Yaoming Sun
  • Xiudi Xiao
  • Gang Xu
  • Guoping Dong
  • Guanqi Chai
  • Hua Zhang
  • Pengyi Liu
  • Hanmin Zhu
  • Yongjun Zhan
چکیده

VO2 (M) STF through reduction of V2O5 STF was prepared. The results illustrate that V2O5 STF can be successfully obtained by oblique angle thermal evaporation technique. After annealing at 550 °C/3 min, the V2O5 STF deposited at 85° can be easily transformed into VO2 STF with slanted columnar structure and superior thermochromic properties. After deposition SiO2 antireflective layer, Tlum of VO2 STF is enhanced 26% and ΔTsol increases 60% compared with that of normal VO2 thin films. Due to the anisotropic microstructure of VO2 STF, angular selectivity transmission of VO2 STF is observed and the solar modulation ability is further improved from 7.2% to 8.7% when light is along columnar direction. Moreover, the phase transition temperature of VO2 STF can be depressed into 54.5 °C without doping. Considering the oblique incidence of sunlight on windows, VO2 STF is more beneficial for practical application as smart windows compared with normal homogenous VO2 thin films.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Visible Transmittance of Thermochromic VO2 Thin Films by SiO2 Passivation Layer and Their Optical Characterization

This paper presents the preparation of high-quality vanadium dioxide (VO₂) thermochromic thin films with enhanced visible transmittance (Tvis) via radio frequency (RF) sputtering and plasma enhanced chemical vapor deposition (PECVD). VO₂ thin films with high Tvis and excellent optical switching efficiency (Eos) were successfully prepared by employing SiO₂ as a passivation layer. After SiO₂ depo...

متن کامل

Preparation, Characterization and Thermo-Chromic Properties of EVA/VO2 Laminate Films for Smart Window Applications and Energy Efficiency in Building

Thermochromic films based on vanadium dioxide (VO₂)/ethylene vinyl acetate copolymer (EVA) composite were developed. The monoclinic VO₂ particles was firstly prepared via hydrothermal and calcination processes. The effects of hydrothermal time and tungsten doping agent on crystal structure and morphology of the calcined metal oxides were reported. After that, 1 wt % of the prepared VO₂ powder w...

متن کامل

Thermochromic Oxide-Based Thin Films and Nanoparticle Composites for Energy-Efficient Glazings

Today’s advances in materials science and technology can lead to better buildings with improved energy efficiency and indoor conditions. Particular attention should be directed towards windows and glass facades—jointly known as “glazings”—since current practices often lead to huge energy expenditures related to excessive inflow or outflow of energy which need to be balanced by energy-intensive ...

متن کامل

Current-modulated optical properties of vanadium dioxide thin films in the phase transition region

Articles you may be interested in Optical switching and photoluminescence in erbium-implanted vanadium dioxide thin films Effect of oxygen stoichiometry on the insulator-metal phase transition in vanadium oxide thin films studied using optical pump-terahertz probe spectroscopy Appl. Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applicat...

متن کامل

Hydrothermal growth of VO2 nanoplate thermochromic films on glass with high visible transmittance

The preparation of thermochromic vanadium dioxide (VO2) films in an economical way is of interest to realizing the application of smart windows. Here, we reported a successful preparation of self-assembly VO2 nanoplate films on TiO2-buffered glass by a facile hydrothermal process. The VO2 films composed of triangle-shaped plates standing on substrates exhibit a self-generated porous structure, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013