Transport in nanoribbon interconnects obtained from graphene grown by chemical vapor deposition.

نویسندگان

  • Ashkan Behnam
  • Austin S Lyons
  • Myung-Ho Bae
  • Edmond K Chow
  • Sharnali Islam
  • Christopher M Neumann
  • Eric Pop
چکیده

We study graphene nanoribbon (GNR) interconnects obtained from graphene grown by chemical vapor deposition (CVD). We report low- and high-field electrical measurements over a wide temperature range, from 1.7 to 900 K. Room temperature mobilities range from 100 to 500 cm(2)·V(-1)·s(-1), comparable to GNRs from exfoliated graphene, suggesting that bulk defects or grain boundaries play little role in devices smaller than the CVD graphene crystallite size. At high-field, peak current densities are limited by Joule heating, but a small amount of thermal engineering allows us to reach ∼2 × 10(9) A/cm(2), the highest reported for nanoscale CVD graphene interconnects. At temperatures below ∼5 K, short GNRs act as quantum dots with dimensions comparable to their lengths, highlighting the role of metal contacts in limiting transport. Our study illustrates opportunities for CVD-grown GNRs, while revealing variability and contacts as remaining future challenges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time Domain Analysis of Graphene Nanoribbon Interconnects Based on Transmission Line ‎Model

Time domain analysis of multilayer graphene nanoribbon (MLGNR) interconnects, based on ‎transmission line modeling (TLM) using a six-order linear parametric expression, has been ‎presented for the first time. We have studied the effects of interconnect geometry along with ‎its contact resistance on its step response and Nyquist stability. It is shown that by increasing ‎interconnects dimensions...

متن کامل

Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition

The reasons for the relatively low transport mobility of graphene grown through chemical vapor deposition (CVD-G), which include point defect, surface contamination, and line defect, were analyzed in the current study. A series of control experiments demonstrated that the determinant factor for the low transport mobility of CVD-G did not arise from point defects or surface contaminations, but s...

متن کامل

Control of Superhydrophilic and Superhydrophobic Graphene Interface

Superhydrophobic and superhydrophilic properties of chemically-modified graphene have been achieved in larger-area vertically aligned few-layer graphene nanosheets (FLGs), prepared on Si (111) substrate by microwave plasma chemical vapor deposition (MPCVD). Furthermore, in order to enhance wettability, silicon wafers with microstructures were fabricated, on which graphene nanosheets were grown ...

متن کامل

Effect of ribbon width on electrical transport properties of graphene nanoribbons

There has been growing interest in developing nanoelectronic devices based on graphene because of its superior electrical properties. In particular, patterning graphene into a nanoribbon can open a bandgap that can be tuned by changing the ribbon width, imparting semiconducting properties. In this study, we report the effect of ribbon width on electrical transport properties of graphene nanorib...

متن کامل

Current-Perpendicular-to-Plane Magnetoresistance in Chemical Vapor Deposition-Grown Multilayer Graphene

Current-perpendicular-to-plane (CPP) magnetoresistance (MR) effects are often exploited in various state-of-the-art magnetic field sensing and data storage technologies. Most of the CPP-MR devices are artificial layered structures of ferromagnets and non-magnets, and in these devices, MR manifests, due to spin-dependent carrier transmission through the constituent layers. In this work, we explo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 12 9  شماره 

صفحات  -

تاریخ انتشار 2012