Ratios of Periods for Tensor Product Motives

نویسندگان

  • Chandrasheel Bhagwat
  • A. Raghuram
  • A. RAGHURAM
چکیده

In this paper, we prove some period relations for the ratio of Deligne’s periods for certain tensor product motives. These period relations give a motivic interpretation for certain algebraicity results for ratios of successive critical values for Rankin–Selberg L-functions for GLn × GLn′ proved by Günter Harder and the second author.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilinear Morphisms between 1-motives

We introduce the notion of biextensions of 1-motives by 1-motives and we define morphisms from the tensor product of two 1-motives to a third 1-motive as isomorphism classes of such biextensions. If S is the spectrum of a field of characteristic 0, we check that these biextensions define morphisms from the tensor product of the realizations of two 1-motives to the realization of a third 1-motiv...

متن کامل

Biextensions of 1-motives by 1-motives

Let S be a scheme. In this paper, we define the notion of biextensions of 1-motives by 1-motives. Moreover, if M(S) denotes the Tannakian category generated by 1-motives over S (in a geometrical sense), we define geometrically the morphisms of M(S) from the tensor product of two 1-motives M1⊗M2 to another 1-motive M3, to be the isomorphism classes of biextensions of (M1, M2) by M3: HomM(S)(M1 ⊗...

متن کامل

On Tensor Product of Graphs, Girth and Triangles

The purpose of this paper is to obtain a necessary and sufficient condition for the tensor product of two or more graphs to be connected, bipartite or eulerian. Also, we present a characterization of the duplicate graph $G 1 K_2$ to be unicyclic. Finally, the girth and the formula for computing the number of triangles in the tensor product of graphs are worked out.

متن کامل

Bessel multipliers on the tensor product of Hilbert $C^ast-$‎ modules‎

In this paper, we first show that the tensor product of a finite number of standard g-frames (resp. fusion frames, frames) is a standard g-frame (resp. fusion frame, frame) for the tensor product of Hilbert $C^ast-$ modules and vice versa, then we consider tensor products of g-Bessel multipliers, Bessel multipliers and Bessel fusion multipliers in Hilbert $C^ast-$modules. Moreover, we obtain so...

متن کامل

On the Exponent of Triple Tensor Product of p-Groups

The non-abelian tensor product of groups which has its origins in algebraic K-theory as well as inhomotopy theory, was introduced by Brown and Loday in 1987. Group theoretical aspects of non-abelian tensor products have been studied extensively. In particular, some studies focused on the relationship between the exponent of a group and exponent of its tensor square. On the other hand, com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014