On uniqueness of prime bipartite factors of graphs

نویسنده

  • Richard Hammack
چکیده

It has long been known that the class of connected nonbipartite graphs (with loops allowed) obeys unique prime factorization over the direct product of graphs. Moreover, it is known that prime factorization is not necessarily unique in the class of connected bipartite graphs. But any prime factorization of a connected bipartite graph has exactly one bipartite factor. Moreover, empirical evidence suggests that any two prime factorings of a given connected bipartite graph have isomorphic bipartite factors. This prompts us to conjecture that among all the different prime factorings of a given connected bipartite graph, the bipartite factor is always the same. The present paper proves that the conjecture is true for graphs that have a K2 factor. (Even in this simple case, the result is surprisingly nontrivial.) Further, we indicate how to compute all possible prime factorings of such a graph. In addition, we show how the truth of the conjecture (in general) would lead to a method of finding all distinct prime factorings of any connected bipartite graph. To accomplish this, we prove the following preliminary result, which is the main technical result of the paper: Suppose A × B is connected and bipartite, and B is the bipartite factor. If A × B admits an involution that reverses partite sets, then B also admits such an involution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independent domination in directed graphs

In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...

متن کامل

The p-median and p-center Problems on Bipartite Graphs

Let $G$ be a bipartite graph. In this paper we consider the two kind of location problems namely $p$-center and $p$-median problems on bipartite graphs. The $p$-center and $p$-median problems asks to find a subset of vertices of cardinality $p$, so that respectively the maximum and sum of the distances from this set to all other vertices in $G$ is minimized. For each case we present some proper...

متن کامل

META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...

متن کامل

A generalization of Villarreal's result for unmixed tripartite graphs

‎In this paper we give a characterization of unmixed tripartite‎ ‎graphs under certain conditions which is a generalization of a‎ ‎result of Villarreal on bipartite graphs‎. ‎For bipartite graphs two‎ ‎different characterizations were given by Ravindra and Villarreal‎. ‎We show that these two characterizations imply each other‎.

متن کامل

A prime factor theorem for bipartite graphs

It has long been known that the class of connected nonbipartite graphs (with loops allowed) obeys unique prime factorization over the direct product of graphs. Moreover, it is known that prime factorization is not necessarily unique in the class of connected bipartite graphs. But any prime factorization of a connected bipartite graph has exactly one bipartite factor. It has become folklore in s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 313  شماره 

صفحات  -

تاریخ انتشار 2013