Effects of tobacco ethylene receptor mutations on receptor kinase activity, plant growth and stress responses.
نویسندگان
چکیده
Ethylene receptor is the first component of ethylene signaling that regulates plant growth, development and stress responses. Previously, we have demonstrated that tobacco subfamily 2 ethylene receptor NTHK1 had Ser/Thr kinase activity, and overexpression of NTHK1 caused large rosette, reduced ethylene sensitivity, and increased salt sensitivity in transgenic Arabidopsis plants. Here we found that N-box mutation in the NTHK1 kinase domain abolished the kinase activity and led to disruption of NTHK1 roles in conferring reduced ethylene sensitivity and salt sensitive response in transgenic Arabidopsis plants. However, N-box mutation had partial effects on NTHK1 regulation of rosette growth and expression of salt- and ethylene-responsive genes AtNAC2, AtERF1 and AtCor6.6. Mutation of conserved residues in the H box did not affect kinase activity, seedling growth, ethylene sensitivity or salt-induced epinasty in transgenic plants but did influence NTHK1 function in control of specific salt- and ethylene-responsive gene expression. Compared with NTHK1, the tobacco subfamily 1 ethylene receptor NtETR1 had His kinase activity and played a weak role in regulation of rosette growth, triple response and salt response. Mutation of the conserved His residue in the NtETR1 H box eliminated phosphorylation and altered the effect of Ntetr1-1 on reporter gene activity. These results imply that the Ser/Thr kinase activity of NTHK1 is differentially required for various responses, and NTHK1 plays a larger role than NtETR1.
منابع مشابه
Evidence for serine/threonine and histidine kinase activity in the tobacco ethylene receptor protein NTHK2.
Ethylene plays important roles in plant growth, development, and stress responses. Two ethylene receptors, ETR1 from Arabidopsis and NTHK1 from tobacco (Nicotiana tabacum), have been found to have His kinase (HK) activity and Ser/Thr kinase activity, respectively, although both show similarity to bacterial two-component HK. Here, we report the characterization of another ethylene receptor homol...
متن کاملModulation of ethylene responses affects plant salt-stress responses.
Ethylene signaling plays important roles in multiple aspects of plant growth and development. Its functions in abiotic stress responses remain largely unknown. Here, we report that alteration of ethylene signaling affected plant salt-stress responses. A type II ethylene receptor homolog gene NTHK1 (Nicotiana tabacum histidine kinase 1) from tobacco (N. tabacum) conferred salt sensitivity in NTH...
متن کاملEstrogenic Activity of Some Phytoestrogens on Bovine Oxytocin and Thymidine Kinase-ERE Promoter through Estrogen Receptor-α in MDA-MB 231 Cells
Background: Phytoestrogens, a group of plant-derived polyphenolic compounds have recently come into considerable attention due to the increasing information on their potential adverse effects in human health. Some of phytoestrogens show estrogenic activity that may be carcinogenic for human. In the present study, we investigated the transcriptional effects of variety of phytoestrogens ...
متن کاملTobacco Translationally Controlled Tumor Protein Interacts with Ethylene Receptor Tobacco Histidine Kinase1 and Enhances Plant Growth through Promotion of Cell Proliferation.
Ethylene is an important phytohormone in the regulation of plant growth, development, and stress response throughout the lifecycle. Previously, we discovered that a subfamily II ethylene receptor tobacco (Nicotiana tabacum) Histidine Kinase1 (NTHK1) promotes seedling growth. Here, we identified an NTHK1-interacting protein translationally controlled tumor protein (NtTCTP) by the yeast (Saccharo...
متن کاملResponses of Transgenic Tobacco (Nicotiana plambaginifolia) Over-Expressing P5CS Gene Underin vitroSalt Stress
Salinity is a major limiting factor for plant growth and development. To evaluate the impact of P5CS gene expression under in vitro salt stress condition, transgenic tobacco (Nicotiana plumbaginifolia) carrying P5CS gene and non-transgenic plants were treated with 0, 100, 150, 200 or 250 mM NaCl for 28 days. Proline content, lipid peroxidation and the activity of some antioxidant enzymes after ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant & cell physiology
دوره 50 9 شماره
صفحات -
تاریخ انتشار 2009