β-Arrestin 1/2 Aggravates Podocyte Apoptosis of Diabetic Nephropathy via Wnt/β-Catenin Pathway
نویسندگان
چکیده
BACKGROUND β-arrestins have been shown to play a critical role in the progression of diabetic nephropathy. Nevertheless, the potential mechanism of β-arrestins on the regulation of podocyte apoptosis has rarely been discussed. This study aimed to elucidate the regulation of β-arrestin 1/2 on podocyte apoptosis through the Wnt/b-catenin pathway. MATERIAL AND METHODS This study structured β-arrestin 1/2 down-regulated and up-regulated expression by plasmid transfection. The protein levels were detected with Western blotting, and mRNA expression was detected with RT-qPCR. The apoptotic cells were measured by flow cytometry. RESULTS β-arrestin 1/2 expression levels of podocytes were up-regulated in high-glucose-induced podocytes. β-arrestin 1/2 overexpression inhibited the expression of nephrin and podocin protein. Up-regulated β-arrestin 1/2 promoted podocyte apoptosis and p53 pathway by increasing Bax, cleaved caspase-3, and p-p53 levels in high-glucose-induced podocytes. Flow cytometry showed that the apoptotic cells were markedly higher in the b-arrestin 1/2 up-regulated group compared with the scramble group. Expression of β-catenin was increased in the β-arrestin 1/2 up-regulated group, which indicated that the Wnt/b-catenin pathway was activated. Wnt/b-catenin pathway inhibitor (Dkk1) distinctly suppressed the apoptosis induced by β-arrestin 1/2 overexpression and high glucose. CONCLUSIONS These results provide a molecular pathomechanism of β-arrestin 1/2 and Wnt/β-catenin pathway on podocyte apoptosis and provide new ideas for the treatment of diabetic nephropathy, which paves the way for the future study of diabetic nephropathy and podocytes.
منابع مشابه
A Glimpse of the Pathogenetic Mechanisms of Wnt/β-Catenin Signaling in Diabetic Nephropathy
The Wnt family of proteins belongs to a group of secreted lipid-modified glycoproteins with highly conserved cysteine residues. Prior results indicate that Wnt/β-catenin signaling plays a prominent role in cell differentiation, adhesion, survival, and apoptosis and is involved in organ development, tumorigenesis, and tissue fibrosis, among other functions. Accumulating evidence has suggested th...
متن کاملThe protective effect of propofol on hydrogen peroxide-induced human esophageal carcinoma via blocking the Wnt/β-catenin signaling pathway
Objective(s): To analyze the potential influences of propofol on the oxidative stress of H2O2-induced human esophageal squamous cell carcinoma (ESCC) Eca109 cell through mediating the Wnt/β-catenin signaling pathway.Materials and Methods: Eca109 cells were classified into 5 groups: Control group, H2O2 group, Propofol + H2O2 group, Dkk1 (Dickkopf-1, Wnt/β-catenin pathway antagonist) + H2O2 group...
متن کاملWnt/β-Catenin Signaling Mediated-UCH-L1 Expression in Podocytes of Diabetic Nephropathy
Increasing studies identified podocyte injury as a key early risk factor resulting in diabetic nephropathy (DN). The ubiquitin carboxy-terminal hydrolase 1 (UCH-L1) participates in podocyte differentiation and injury, which is elevated in the podocytes of a variety of nephritis. Whether UCH-L1 expression is positively related to podocyte injury of DN remains unclear. In this study, elevated exp...
متن کاملQuercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122
Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...
متن کاملMicroRNA-27a promotes podocyte injury via PPARγ-mediated β-catenin activation in diabetic nephropathy
Podocyte injury has a pivotal role in the pathogenesis of diabetic nephropathy (DN). MicroRNA-27a (miR-27a), peroxisome proliferator-activated receptor γ (PPARγ) and β-catenin pathways have been involved in the pathogenesis of DN. Herein, we asked whether miR-27a mediates podocyte injury through PPARγ/β-catenin signaling in DN. The functional relevance of miR-27a, PPARγ and β-catenin were inves...
متن کامل