Meta-structure correlation in protein space unveils different selection rules for folded and intrinsically disordered proteins.

نویسندگان

  • Yandi Naranjo
  • Miquel Pons
  • Robert Konrat
چکیده

The number of existing protein sequences spans a very small fraction of sequence space. Natural proteins have overcome a strong negative selective pressure to avoid the formation of insoluble aggregates. Stably folded globular proteins and intrinsically disordered proteins (IDPs) use alternative solutions to the aggregation problem. While in globular proteins folding minimizes the access to aggregation prone regions, IDPs on average display large exposed contact areas. Here, we introduce the concept of average meta-structure correlation maps to analyze sequence space. Using this novel conceptual view we show that representative ensembles of folded and ID proteins show distinct characteristics and respond differently to sequence randomization. By studying the way evolutionary constraints act on IDPs to disable a negative function (aggregation) we might gain insight into the mechanisms by which function-enabling information is encoded in IDPs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins.

The structural stability of a protein requires a large number of interresidue interactions. The energetic contribution of these can be approximated by low-resolution force fields extracted from known structures, based on observed amino acid pairing frequencies. The summation of such energies, however, cannot be carried out for proteins whose structure is not known or for intrinsically unstructu...

متن کامل

G protein-coupled receptors show unusual patterns of intrinsic unfolding.

Intrinsically unstructured proteins (IUPs) or IUP-like regions often play key roles in controlling processes ranging from transcription to the cell cycle. In silico such proteins can be identified by their sequence properties; they have low hydrophobicity and high net charge. In this study, we applied the FoldIndex (http://bioportal.weizmann.ac.il/fldbin/findex) program to analyze human G prote...

متن کامل

Structural Characterization of Disordered States of Proteins

Structural Characterization of Disordered States of Proteins Joseph Arthur Marsh Doctor of Philosophy Department of Biochemistry University of Toronto 2010 Disordered states of proteins include the biologically functional intrinsically disordered proteins and the unfolded states of folded proteins which are important for protein folding and stability. Just as solving the structures of folded pr...

متن کامل

Conformational selection in the molten globule state of the nuclear coactivator binding domain of CBP.

Native molten globules are the most folded kind of intrinsically disordered proteins. Little is known about the mechanism by which native molten globules bind to their cognate ligands to form fully folded complexes. The nuclear coactivator binding domain (NCBD) of CREB binding protein is particularly interesting in this respect as structural studies of its complexes have shown that NCBD folds i...

متن کامل

Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding.

Intrinsically disordered proteins (IDPs) frequently function in protein interaction networks that regulate crucial cellular signaling pathways. Many IDPs undergo transitions from disordered conformational ensembles to folded structures upon binding to their cellular targets. Several possible binding mechanisms for coupled folding and binding have been identified: folding of the IDP after associ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular bioSystems

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2012