Determining the dimension of the central subspace and central mean subspace
نویسنده
چکیده
The central subspace and central mean subspace are two important targets of sufficient dimension reduction. We propose a weighted chi-squared test to determine their dimensions based on matrices whose column spaces are exactly equal to the central subspace or the central mean subspace. The asymptotic distribution of the test statistic is obtained. Simulation examples are used to demonstrate the performance of this test.
منابع مشابه
A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملIsotropic Constant Dimension Subspace Codes
In network code setting, a constant dimension code is a set of k-dimensional subspaces of F nq . If F_q n is a nondegenerated symlectic vector space with bilinear form f, an isotropic subspace U of F n q is a subspace that for all x, y ∈ U, f(x, y) = 0. We introduce isotropic subspace codes simply as a set of isotropic subspaces and show how the isotropic property use in decoding process, then...
متن کاملFourier Methods for Estimating the Central Subspace and the Central Mean Subspace in Regression
In regression with a high-dimensional predictor vector, it is important to estimate the central and central mean subspaces that preserve sufficient information about the response and the mean response. Using the Fourier transform, we have derived the candidate matrices whose column spaces recover the central and central mean subspaces exhaustively. Under the normality assumption of the predicto...
متن کاملDimension Reduction in Regression Estimation with Nearest Neighbor
In regression with a high-dimensional predictor vector, dimension reduction methods aim at replacing the predictor by a lower dimensional version without loss of information on the regression. In this context, the so-called central mean subspace is the key of dimension reduction. The last two decades have seen the emergence of many methods to estimate the central mean subspace. In this paper, w...
متن کاملOn estimation efficiency of the central mean subspace
We investigate the estimation efficiency of the central mean subspace in the framework of sufficient dimension reduction. We derive the semiparametric efficient score and study its practical applicability. Despite the difficulty caused by the potential high dimension issue in the variance component, we show that locally efficient estimators can be constructed in practice. We conduct simulation ...
متن کامل