Serum albumin disrupts Cryptococcus neoformans and Bacillus anthracis extracellular vesicles.

نویسندگان

  • Julie M Wolf
  • Johanna Rivera
  • Arturo Casadevall
چکیده

For both pathogenic fungi and bacteria, extracellular vesicles have been shown to contain many microbial components associated with virulence, suggesting a role in pathogenesis. However, there are many unresolved issues regarding vesicle synthesis and stability, including the fact that vesicular packaging for extracellular factors involved in virulence must also have a mechanism for vesicle unloading. Consequently, we studied the kinetics of vesicle production and stability using [1-(14) C] palmitic acid metabolic labelling and dynamic light scattering techniques. Cryptococcus neoformans vesicles were produced throughout all stages of fungal culture growth and they were stable once isolated. Density gradient analysis revealed that only a portion of the vesicle population carried cryptococcal polysaccharide, implying heterogeneity in vesicular cargo. Vesicle incubation with macrophages resulted in rapid vesicle instability, a phenomenon that was ultimately associated with serum albumin. Additionally, albumin, along with mouse serum and murine immunoglobulin destabilized Bacillus anthracis vesicles, but the effect was not observed with ovalbumin or keyhole limpet haemocyanin, demonstrating that this phenomenon is neither host-, microbe- nor protein-specific. Our findings strongly suggest that cryptococcal vesicles are short-lived in vivo and vesicle destabilization is mediated by albumin. The ability of albumin to promote vesicular offload through destabilization indicates a new activity for this abundant serum protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Cryptococcus neoformans galactoxylomannan-protein conjugate as vaccine candidate against murine cryptococcosis.

Galactoxylomannan (GalXM) is a complex polysaccharide produced by the human pathogenic fungus Cryptococcus neoformans that mediates profound immunological derangements in murine models. GalXM is essentially non-immunogenic and produces immune paralysis in mice. Previous studies have attempted to enhance immunogenicity by conjugating GalXM to a protein carrier, but only transient antibody respon...

متن کامل

Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions.

Cryptococcus neoformans and distantly related fungal species release extracellular vesicles that traverse the cell wall and contain a varied assortment of components, some of which have been associated with virulence. Previous studies have suggested that these extracellular vesicles are produced in vitro and during animal infection, but the role of vesicular secretion during the interaction of ...

متن کامل

Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport.

The mechanisms by which macromolecules are transported through the cell wall of fungi are not known. A central question in the biology of Cryptococcus neoformans, the causative agent of cryptococcosis, is the mechanism by which capsular polysaccharide synthesized inside the cell is exported to the extracellular environment for capsule assembly and release. We demonstrate that C. neoformans prod...

متن کامل

Vesicle-associated melanization in Cryptococcus neoformans.

Recently, several pathogenic fungi were shown to produce extracellular vesicles that contain various components associated with virulence. In the human pathogenic fungus Cryptococcus neoformans, these components included laccase, an enzyme that catalyses melanin synthesis. Spherical melanin granules have been observed in the cell wall of C. neoformans. Given that melanin granules have dimension...

متن کامل

Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence.

Cryptococcus neoformans produces vesicles containing its major virulence factor, the capsular polysaccharide glucuronoxylomannan (GXM). These vesicles cross the cell wall to reach the extracellular space, where the polysaccharide is supposedly used for capsule growth or delivered into host tissues. In the present study, we characterized vesicle morphology and protein composition by a combinatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular microbiology

دوره 14 5  شماره 

صفحات  -

تاریخ انتشار 2012