Autoadaptive motion modelling for MR-based respiratory motion estimation

نویسندگان

  • Christian F. Baumgartner
  • Christoph Kolbitsch
  • Jamie McClelland
  • Daniel Rueckert
  • Andrew P. King
چکیده

Respiratory motion poses significant challenges in image-guided interventions. In emerging treatments such as MR-guided HIFU or MR-guided radiotherapy, it may cause significant misalignments between interventional road maps obtained pre-procedure and the anatomy during the treatment, and may affect intra-procedural imaging such as MR-thermometry. Patient specific respiratory motion models provide a solution to this problem. They establish a correspondence between the patient motion and simpler surrogate data which can be acquired easily during the treatment. Patient motion can then be estimated during the treatment by acquiring only the simpler surrogate data. In the majority of classical motion modelling approaches once the correspondence between the surrogate data and the patient motion is established it cannot be changed unless the model is recalibrated. However, breathing patterns are known to significantly change in the time frame of MR-guided interventions. Thus, the classical motion modelling approach may yield inaccurate motion estimations when the relation between the motion and the surrogate data changes over the duration of the treatment and frequent recalibration may not be feasible. We propose a novel methodology for motion modelling which has the ability to automatically adapt to new breathing patterns. This is achieved by choosing the surrogate data in such a way that it can be used to estimate the current motion in 3D as well as to update the motion model. In particular, in this work, we use 2D MR slices from different slice positions to build as well as to apply the motion model. We implemented such an autoadaptive motion model by extending our previous work on manifold alignment. We demonstrate a proof-of-principle of the proposed technique on cardiac gated data of the thorax and evaluate its adaptive behaviour on realistic synthetic data containing two breathing types generated from 6 volunteers, and real data from 4 volunteers. On synthetic data the autoadaptive motion model yielded 21.45% more accurate motion estimations compared to a non-adaptive motion model 10 min after a change in breathing pattern. On real data we demonstrated the method's ability to maintain motion estimation accuracy despite a drift in the respiratory baseline. Due to the cardiac gating of the imaging data, the method is currently limited to one update per heart beat and the calibration requires approximately 12 min of scanning. Furthermore, the method has a prediction latency of 800 ms. These limitations may be overcome in future work by altering the acquisition protocol.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic MLC Tracking Using 4D Lung Tumor Motion Modelling and EPID Feedback

Background: Respiratory motion causes thoracic movement and reduces targeting accuracy in radiotherapy. Objective: This study proposes an approach to generate a model to track lung tumor motion by controlling dynamic multi-leaf collimators. Material and Methods: All slices which contained tumor were contoured in the 4D-CT images for...

متن کامل

Advanced Respiratory Motion Compensation for Coronary MR Angiography

Despite technical advances, respiratory motion remains a major impediment in a substantial amount of patients undergoing coronary magnetic resonance angiography (CMRA). Traditionally, respiratory motion compensation has been performed with a one-dimensional respiratory navigator positioned on the right hemi-diaphragm, using a motion model to estimate and correct for the bulk respiratory motion ...

متن کامل

New adaptive interpolation schemes for efficient meshbased motion estimation

Motion estimation and compensation is an essential part of existing video coding systems. The mesh-based motion estimation (MME) produces smoother motion field, better subjective quality (free from blocking artifacts), and higher peak signal-to-noise ratio (PSNR) in many cases, especially at low bitrate video communications, compared to the conventional block matching algorithm (BMA). Howev...

متن کامل

MR compatible sensor for motion artifact corrected reconstruction method

INTRODUCTION: Patient motion, especially respiratory and cardiac motion, leads to artifacts which could damage the quality of Magnetic Resonance Imaging (MRI) and make the resulting diagnosis less accurate. If such motion occurs during MRI acquisitions, it has been shown that, knowing this motion, it is possible to invert the process of artifact production and to reconstruct a motion compensate...

متن کامل

MR-based motion correction for cardiac PET parametric imaging: a simulation study

BACKGROUND Both cardiac and respiratory motions bias the kinetic parameters measured by dynamic PET. The aim of this study was to perform a realistic positron emission tomography-magnetic resonance (PET-MR) simulation study using 4D XCAT to evaluate the impact of MR-based motion correction on the estimation of PET myocardial kinetic parameters using PET-MR. Dynamic activity distributions were o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image analysis

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2017