Strong Morita Equivalence of Higher-dimensional Noncommutative Tori

نویسنده

  • HANFENG LI
چکیده

Let n ≥ 2 and Tn be the space of n × n real skew-symmetric matrices. For each θ ∈ Tn the corresponding n-dimensional noncommutative torus Aθ is defined as the universal C-algebra generated by unitaries U1, · · · , Un satisfying the relation UkUj = e(θkj)UjUk, where e(t) = e. Noncommutative tori are one of the canonical examples in noncommutative differential geometry [12, 2]. One may also consider the smooth version A∞θ of a noncommutative torus, which is the algebra of formal series

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Morita Equivalence of Higher-dimensional Noncommutative Tori. Ii

We show that two C∗-algebraic noncommutative tori are strongly Morita equivalent if and only if they have isomorphic ordered K0-groups and centers, extending N. C. Phillips’s result in the case that the algebras are simple. This is also generalized to the twisted group C∗-algebras of arbitrary finitely generated abelian groups.

متن کامل

Gabor Analysis, Noncommutative Tori and Feichtinger's Algebra

We point out a connection between Gabor analysis and noncommutative analysis. Especially, the strong Morita equivalence of noncommutative tori appears as underlying setting for Gabor analysis, since the construction of equivalence bimodules for noncommutative tori has a natural formulation in the notions of Gabor analysis. As an application we show that Feichtinger’s algebra is such an equivale...

متن کامل

Morita Equivalence of Smooth Noncommutative Tori

We show that in the generic case the smooth noncommutative tori associated to two n×n real skew-symmetric matrices are Morita equivalent if and only if the matrices are in the same orbit of the natural SO(n, n|Z) action.

متن کامل

A Survey on Morita Equivalence of Quantum Tori

This paper is a survey on the problem of classifying non-commutative tori up to Morita equivalence and will review the necessary background and discuss some results concerning this question (see [28],[29] and [22]). The concept of Morita equivalence was first introduced in operator algebras by M.Rieffel in the 1970’s, in connection with the problem of characterizing representations of locally c...

متن کامل

Aspects of Gauge Theory on Commutative and Noncommutative Tori

We study aspects of gauge theory on tori which are a consequences of Morita equivalence. In particular we study the behavior of gauge theory on noncommutative tori for arbitrarily close rational values of Θ. For such values of Θ, there are Morita equivalent descriptions in terms of Yang-Mills theories on commutative tori with very different magnetic fluxes and rank. In order for the correlators...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003