Zeroes of the Bergman kernel of Hartogs domains
نویسنده
چکیده
We exhibit a class of bounded, strongly convex Hartogs domains with realanalytic boundary which are not Lu Qi-Keng, i.e. whose Bergman kernel function has a zero.
منابع مشابه
$L^p$ boundedness of the Bergman projection on some generalized Hartogs triangles
In this paper we investigate a two classes of domains in $mathbb{C}^n$ generalizing the Hartogs triangle. We prove optimal estimates for the mapping properties of the Bergman projection on these domains.
متن کاملThe Equivalent Classical Metrics on the Cartan-hartogs Domains
In this paper we study the complete invariant metrics on CartanHartogs domains which are the special types of Hua domains. Firstly, we introduce a class of new complete invariant metrics on these domains, and prove that these metrics are equivalent to the Bergman metric. Secondly, the Ricci curvatures under these new metrics are bounded from above and below by the negative constants. Thirdly, w...
متن کاملThe Kähler–einstein Metric for Some Hartogs Domains over Bounded Symmetric Domains
We study the complete Kähler-Einstein metric of a Hartogs domain Ω̃ built on an irreducible bounded symmetric domain Ω, using a power N of the generic norm of Ω. The generating function of the Kähler-Einstein metric satisfies a complex Monge-Ampère equation with boundary condition. The domain Ω̃ is in general not homogeneous, but it has a subgroup of automorphisms, the orbits of which are paramet...
متن کاملA study of the Bergman projection in certain Hartogs domains
We show that the Bergman projection does not preserve smoothness of functions in some pseudoconvex domains in the space of two complex variables.
متن کاملWeighted Bergman projections on the Hartogs triangle: exponential decay
We study weighted Bergman projections on the Hartogs triangle in C. We show that projections corresponding to exponentially vanishing weights have degenerate L mapping properties.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010