Landau-Ginzburg Description of Boundary Critical Phenomena in Two Dimensions
نویسنده
چکیده
The Virasoro minimal models with boundary are described in the LandauGinzburg theory by introducing a boundary potential, function of the boundary field value. The ground state field configurations become non-trivial and are found to obey the soliton equations. The conformal invariant boundary conditions are characterized by the reparametrization-invariant data of the boundary potential, that are the number and degeneracies of the stationary points. The boundary renormalization group flows are obtained by varying the boundary potential while keeping the bulk critical: they satisfy new selection rules and correspond to real deformations of the Arnold simple singularities of Ak type. The description of conformal boundary conditions in terms of boundary potential and associated ground state solitons is extended to the N = 2 supersymmetric case, finding agreement with the analysis of A-type boundaries by Hori, Iqbal and Vafa.
منابع مشابه
Exact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملUniqueness of vortexless Ginzburg-Landau type minimizers in two dimensions
In a simply connected two dimensional domain Ω, we consider Ginzburg-Landau minimizers u with zero degree Dirichlet boundary condition g ∈ H1/2(∂Ω;S1). We prove uniqueness of u whenever either the energy or the Ginzburg-Landau parameter are small. This generalizes a result of Ye and Zhou requiring smoothness of g. We also obtain uniqueness when Ω is multiply connected and the degrees of the vor...
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملThe Ginzburg-Landau Equations for Superconductivity with Random Fluctuations
Thermal fluctuations and material inhomogeneities have a large effect on superconducting phenomena, possibly inducing transitions to the non-superconducting state. To gain a better understanding of these effects, the Ginzburg–Landau model is studied in situations for which the described physical processes are subject to uncertainty. An adequate description of such processes is possible with the...
متن کاملNumerical calculation of the vortex–columnar-defect interaction and critical currents in extreme type-II superconductors—a two-dimensional model based on the Ginzburg–Landau approximation
We extend our previous one-dimensional Ginzburg–Landau calculations of the pinning energy of vortices to two dimensions, in order to achieve an understanding of the pinning forces exerted on vortices by defects. By minimizing the free energy using a relaxation scheme, we obtain the spatial variation of the order parameter and supercurrents for a vortex in the vicinity of a cylindrical defect in...
متن کامل