On radially maximal graphs

نویسندگان

  • Ferdinand Gliviak
  • Martin Knor
  • Lubomír Soltés
چکیده

A graph is radially maximal if its radius decreases after the addition of any edge of its complement. It is proved that any graph can be an induced subgraph of a regular radially maximal graph with a prescribed radius T 2: 3. For T 2: 4, k 2: 1, radially maximal graphs with radius T containing k cut-nodes are constructed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unicyclic radially-maximal graphs on the minimum number of vertices

We characterize unicyclic, non-selfcentric, radially-maximal graphs on the minimum number of vertices. Such graphs must have radius r ≥ 5, and we prove that the number of these graphs is 1 48 r + O(r).

متن کامل

On Radially Extremal Graphs and Digraphs, a Survey

The paper gives an overview of results for radially minimal, critical, maximal and stable graphs and digraphs.

متن کامل

Minimal non-selfcentric radially-maximal graphs of radius 4

There is a hypothesis that a non-selfcentric radially-maximal graph of radius r has at least 3r − 1 vertices. Using some recent results we prove this hypothesis for r = 4.

متن کامل

Some Results on the Maximal 2-Rainbow Domination Number in Graphs

A 2-rainbow dominating function ( ) of a graph  is a function  from the vertex set  to the set of all subsets of the set  such that for any vertex  with  the condition  is fulfilled, where  is the open neighborhood of . A maximal 2-rainbow dominating function on a graph  is a 2-rainbow dominating function  such that the set is not a dominating set of . The weight of a maximal    is the value . ...

متن کامل

On the saturation number of graphs

Let $G=(V,E)$ be a simple connected graph. A matching $M$ in a graph $G$ is a collection of edges of $G$ such that no two edges from $M$ share a vertex. A matching $M$ is maximal if it cannot be extended to a larger matching in $G$. The cardinality of any smallest maximal matching in $G$ is the saturation number of $G$ and is denoted by $s(G)$. In this paper we study the saturation numbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 9  شماره 

صفحات  -

تاریخ انتشار 1994