Dynamics of hippocampal spatial representation in echolocating bats.
نویسندگان
چکیده
The "place fields" of hippocampal pyramidal neurons are not static. For example, upon a contextual change in the environment, place fields may "remap" within typical timescales of ~ 1 min. A few studies have shown more rapid dynamics in hippocampal activity, linked to internal processes, such as switches between spatial reference frames or changes within the theta cycle. However, little is known about rapid hippocampal place field dynamics in response to external, sensory stimuli. Here, we studied this question in big brown bats, echolocating mammals in which we can readily measure rapid changes in sensory dynamics (sonar signals), as well as rapid behavioral switches between distal and proximal exploratory modes. First, we show that place field size was modulated by the availability of sensory information, on a timescale of ~ 300 ms: Bat hippocampal place fields were smallest immediately after an echolocation call, but place fields "diffused" with the passage of time after the call, when echo information was no longer arriving. Second, we show rapid modulation of hippocampal place fields as the animal switched between two exploratory modes. Third, we compared place fields and spatial view fields of individual neurons and found that place tuning was much more pronounced than spatial view tuning. In addition, dynamic fluctuations in spatial view tuning were stronger than fluctuations in place tuning. Taken together, these results suggest that spatial representation in mammalian hippocampus can be very rapidly modulated by external sensory and behavioral events.
منابع مشابه
Echolocating bats can use acoustic landmarks for spatial orientation.
We investigated the echolocating bat's use of an acoustic landmark for orientation in a complex environment with no visual information. Three bats of the species Eptesicus fuscus were trained to fly through a hole in a mist net to receive a food reward on the other side. In all experiments, the vocal behavior of the bats was recorded simultaneously using a high-speed video recording system, all...
متن کاملThe Effect of 4 Weeks of Aerobic Training on Spatial Learning, Memory Performance and Mitochondrial Dynamics in the Hippocampal Tissue of Old Rats
Background & objectives: Mitochondrial dysfunction is one of the main risk factors for neurological diseases which are associated with aging. On the other hand, aerobic exercise has beneficial effects on the brain health and cognitive function, and also improves mitochondrial dynamics. Therefore, the aim of the present study was to investigate the effect of 4 weeks of aerobic exercise on spatia...
متن کاملRepresentation of three-dimensional space in the auditory cortex of the echolocating bat P. discolor
The auditory cortex is an essential center for sound localization. In echolocating bats, combination sensitive neurons tuned to specific delays between call emission and echo perception represent target distance. In many bats, these neurons are organized as a chronotopically organized map of echo delay. However, it is still unclear to what extend these neurons can process directional informatio...
متن کاملProbing the Natural Scene by Echolocation in Bats
Bats echolocating in the natural environment face the formidable task of sorting signals from multiple auditory objects, echoes from obstacles, prey, and the calls of conspecifics. Successful orientation in a complex environment depends on auditory information processing, along with adaptive vocal-motor behaviors and flight path control, which draw upon 3-D spatial perception, attention, and me...
متن کاملParallel Evolution of KCNQ4 in Echolocating Bats
High-frequency hearing is required for echolocating bats to locate, range and identify objects, yet little is known about its molecular basis. The discovery of a high-frequency hearing-related gene, KCNQ4, provides an opportunity to address this question. Here, we obtain the coding regions of KCNQ4 from 15 species of bats, including echolocating bats that have higher frequency hearing and non-e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hippocampus
دوره 21 2 شماره
صفحات -
تاریخ انتشار 2011