Bernuau spline wavelets and Sturmian sequences

نویسندگان

  • Miroslav Andrle
  • Jean-Pierre Gazeau
چکیده

We present spline wavelets of class Cn(R) supported by sequences of aperiodic discretizations of R. The construction is based on multiresolution analysis recently elaborated by G. Bernuau. At a given scale, we consider discretizations that are sets of left-hand ends of tiles in a self-similar tiling of the real line with finite local complexity. Corresponding tilings are determined by two-letter Sturmian substitution sequences. We illustrate the construction with examples having quadratic Pisot-Vijayaraghavan units (like τ = (1 + √ 5)/2 or τ2 = (3 + √ 5)/2) as scaling factor. In particular, we present a comprehensive analysis of the Fibonacci chain and give the analytic form of related scaling functions and wavelets. We also give some hints for the construction of multidimensional spline wavelets based on stone-inflation tilings in arbitrary dimension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Wavelet Decomposition over Finite Fields

Abstract – This paper introduces some foundations of wavelets over Galois fields. Standard orthogonal finite-field wavelets (FFWavelets) including FF-Haar and FFDaubechies are derived. Non-orthogonal FFwavelets such as B-spline over GF(p) are also considered. A few examples of multiresolution analysis over Finite fields are presented showing how to perform Laplacian pyramid filtering of finite ...

متن کامل

Solving optimal control problems with integral equations or integral equations - differential with the help of cubic B-spline scaling functions and wavelets

In this paper, a numerical method based on cubic B-spline scaling functions and wavelets for solving optimal control problems with the dynamical system of the integral equation or the differential-integral equation is discussed. The Operational matrices of derivative and integration of the product of two cubic B-spline wavelet vectors, collocation method and Gauss-Legendre integration rule for ...

متن کامل

A new view on biorthogonal spline wavelets

The biorthogonal wavelets introduced by Cohen, Daubechies, and Feauveau contain in particular compactly supported biorthogonal spline wavelets with compactly supported duals. We present a new approach for the construction of compactly supported spline wavelets, which is entirely based on properties of splines in the time domain. We are able to characterize a large class of such wavelets which c...

متن کامل

Multiresolution Analysis for Implicitly Defined Algebraic Spline Curves with Weighted Wavelets

We describe a method to construct a hierarchical representation of a given implicitly defined algebraic spline curve with the help of weighted spline wavelets. These wavelets are adapted to the region of interest, in our case to the region along the curve, by means of a weighted inner product. The application of two different types of weighted spline wavelets is considered and compared with sta...

متن کامل

Wavelets, multiwavelets and wavelet frames for periodic functions

Various results on constructing wavelets, multiwavelets and wavelet frames for periodic functions are reviewed. The orthonormal and Riesz bases as well as frames are constructed from sequences of subspaces called multiresolution analyses. These studies employ general frequency-based approaches facilitated by functions known as orthogonal splines and polyphase splines. While the focus is on the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003