Optical properties of chalcogen-loaded zeolite (ZSM-5)

نویسندگان

  • Akira Saitoh
  • Keiji Tanaka
چکیده

Sulfur, selenium, and tellurium were loaded into sub-mm size ZSM-5 single crystals and the optical properties have been comparatively studied. S and Te show similar features, while Se is unique. S and Te have optical absorption edges at wavelengths of ~400 nm with transmission dips at ~450 nm, while Se has the edge at ~550 nm. The three materials provide photoluminescence at visible wavelengths, with intensities of S and Te being stronger than that of Se by two orders. These optical properties imply that S and Te in the zeolite form small atomic units such as S3 and Te2, while Se condenses into single-chain structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ZSM-5 Zeolite As Host Material for Semiconductor Nanoparticles

This work describes the optical and structure properties of nickel sulfide and cobalt sulfide nanoparticles in ZSM-5 zeolite. The samples were obtained by sulfidation of the Ni2+ and Co2+ ion-exchange ZSM-5 zeolites in a Na2S solution at room temperature. The optical properties of the samples were studied by UV-visible spectroscopy. Their crystalline structure and morphology were studied by X-r...

متن کامل

Methanol-to-hydrocarbons conversion over MoO3/H-ZSM-5 catalysts prepared via lower temperature calcination: a route to tailor the distribution and evolution of promoter Mo species, and their corresponding catalytic properties† †Electronic supplementary information (ESI) available: more TEM images of post-run samples, CS Chem3D Model of zeolite and external surface MoO3, images and file (.c3xml). See DOI: 10.1039/c5sc01825k Click here for additional data file. Click here for additional data file.

The supplementary data have included a full range of TEM pictures of the post-run samples, including 400 oC calcinated MoO3/H-ZSM-5 samples (coked) and the parent H-ZSM-5 (coked), showing the distribution of Mo clusters on the zeolite crystallite external surface, and the observed coke deposition upon the spreading of the Mo species. The Figures S1-S9 are the complementary of the Fig. 8 in the ...

متن کامل

Strategies to Enhance the Catalytic Performance of ZSM-5 Zeolite in Hydrocarbon Cracking: A Review

ZSM-5 zeolite is widely used in catalytic cracking of hydrocarbon, but the conventional ZSM-5 zeolite deactivates quickly due to its simple microporous and long diffusion pathway. Many studies have been done to overcome these disadvantages recently. In this review, four main approaches for enhancing the catalytic performance, namely synthesis of ZSM-5 zeolite with special morphology, hierarchic...

متن کامل

Preparing hierarchical nanoporous ZSM-5 zeolite via post-synthetic modification of zeolite synthesized from bagasse and its application for removal of Pb2+

In this study, hierarchical H-ZSM-5 zeolite is prepared via post-synthetic modification of parent H-ZSM-5 zeolite (Si/Al=35) synthesized from bagasse (BGA) as silica source using desilication with alkaline treatment (AT). For optimizing the effective parameters on desilication, Taguchi method was utilized. Cultivated BGA in the south of the Caspian Sea (Mazandaran province, Iran) is applied for...

متن کامل

The Effect of Zeolite Composition and Grain Size on Gas Sensing Properties of SnO2/Zeolite Sensor

In order to improve the sensing properties of tin dioxide gas sensor, four kinds of different SiO₂/Al₂O₃ ratio, different particle size of MFI type zeolites (ZSM-5) were coated on the SnO₂ to prepared zeolite modified gas sensors, and the gas sensing properties were tested. The measurement results showed that the response values of ZSM-5 zeolite (SiO₂/Al₂O₃ = 70, grain size 300 nm) coated SnO₂ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017