Kinetic characterization for pretreatment of timber varieties and switchgrass using diluted acid hydrolysis
نویسندگان
چکیده
In recent years, growing attention has been devoted to the use of lignocellulosic biomass as a feedstock to produce renewable carbohydrates as a source of energy products, including liquid alternatives to fossil fuels. The benefits of developing woody biomass to ethanol technology are to increase the long-term national energy security, reduce fossil energy consumption, lower greenhouse gas emissions, use renewable rather than depletable resources, and create local jobs. Currently, research is driven by the need to reduce the cost of biomass-ethanol production. One of the preferred methods is to thermochemically pretreat the biomass material and subsequently, enzymatically hydrolyze the pretreated material to fermentable sugars that can then be converted to ethanol using specialized microorganisms. The goals of pretreatment are to remove the hemicellulose fraction from other biomass components, reduce bioconversion time, enhance enzymatic conversion of the cellulose fraction, and, hopefully, obtain a higher ethanol yield. The primary goal of this research is to obtain kinetic detailed data for dilute acid hydrolysis for several timber species from the Upper Peninsula of Michigan and switchgrass. These results will be used to identify optimum reaction conditions to maximize production of fermentable sugars and minimize production of non-fermentable byproducts. The structural carbohydrate analysis of the biomass species used in this project was performed using the procedure proposed by National Renewable Energy Laboratory (NREL). Subsequently, dilute acid-catalyzed hydrolysis of biomass, including aspen, basswood, balsam, red maple, and switchgrass, was studied at various temperatures, acid concentrations, and particle sizes in a 1-L well-mixed batch reactor (Parr Instruments,
منابع مشابه
Hydrolysis of Sorghum (Broomcorn) in Diluted Hydrochloric Acid
Effective conversion of lignocellulosic material as renewable energy source has significant reflection on economic and environmental impact. Diluted acid hydrolysis at optimal condition was used to liberate fermentable sugar. The sorghum stalks, the alkali pretreatment of biomass and hydrolysis in diluted hydrochloric acid were investigated. The hydrolysis reaction was carried out in a 5L react...
متن کاملComparative study on enzymatic digestibility of switchgrass varieties and harvests processed by leading pretreatment technologies.
Feedstock quality of switchgrass for biofuel production depends on many factors such as morphological types, geographic origins, maturity, environmental and cultivation parameters, and storage. We report variability in compositions and enzymatic digestion efficiencies for three cultivars of switchgrass (Alamo, Dacotah and Shawnee), grown and harvested at different locations and seasons. Sacchar...
متن کاملMicrowave Pretreatment of Switchgrass to Enhance Enzymatic Hydrolysis
Switchgrass is a promising lignocellulosic biomass for fuel-ethanol production. However, pretreatment of lignocellulosic materials is necessary to improve its susceptibility to enzymatic hydrolysis. The objectives of this study were to examine the feasibility of microwave pretreatment to enhance enzymatic hydrolysis of switchgrass and to determine the optimal pretreatment conditions. Switchgras...
متن کاملSurfactant-Aided Phosphoric Acid Pretreatment to Enable Efficient Bioethanol Production from Glycyrrhiza Glabra Residue
Glycyrrhiza glabra residue (GGR) was efficiently subjected to concentrated phosphoric acid (PA) pretreatment with/without surfactant assistance, and promising results were obtained following separate enzymatic hydrolysis and fermentation (SHF) of the biomass. Pretreatment was carried out using 85 % PA either at 50 or 85 °C with 12.5 % solid loading for 30 min. In parallel experiments, ...
متن کاملComparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification.
The efficiency of two biomass pretreatment technologies, dilute acid hydrolysis and dissolution in an ionic liquid, are compared in terms of delignification, saccharification efficiency and saccharide yields with switchgrass serving as a model bioenergy crop. When subject to ionic liquid pretreatment (dissolution and precipitation of cellulose by anti-solvent) switchgrass exhibited reduced cell...
متن کامل