The quasiinvariants of the symmetric group
نویسندگان
چکیده
For m a non-negative integer and G a Coxeter group, we denote by QIm(G) the ring of m-quasiinvariants of G, as defined by Chalykh, Feigin, and Veselov. These form a nested series of rings, with QI0(G) the whole polynomial ring, and the limit QI∞(G) the usual ring of invariants. Remarkably, the ring QIm(G) is freely generated over the ideal generated by the invariants of G without constant term, and the quotient is isomorphic to the left regular representation of G. However, even in the case of the symmetric group, no basis for QIm(G) is known. We provide a new description of QIm(Sn), and use this to give a basis for the isotypic component of QIm(Sn) indexed by the shape [n− 1, 1]. Résumé. Pour m un entier positif ou nul et G un groupe de Coxeter, nous notons QIm(G) l’anneau des quasiinvariants définis par Chalykh, Feigin et Veselov. On obtient ainsi une série d’anneaux emboités, QI0(G) étant l’anneau des polynômes, et la limite QI∞(G) l’anneau des invariants usuels. Il est remarquable que l’anneau QIm(G) est librement généré sur l’idéal engendré par les invariants de G sans terme constant, et le quotient est isomorphe à la représentation régulière à gauche de G. Cependant, même dans le cas du groupe symétrique, aucune base de QIm(G) n’est connue. Nous donnons une nouvelle description de QIm(G) et l’utilisons pour obtenir une base du composant isotypique de QIm(Sn) indexée par la partition (n− 1, 1).
منابع مشابه
1 1 Ju l 2 00 8 On quasiinvariants of S n of hook shape
Chalykh, Veselov and Feigin introduced the notions of quasiinvariants for Coxeter groups, which is a generalization of invariants. In [2], Bandlow and Musiker showed that for the symmetric group Sn of order n, the space of quasiinvariants has a decomposition indexed by standard tableaux. They gave a description of basis for the components indexed by standard tableaux of shape (n− 1, 1). In this...
متن کاملA new characterization for the m-quasiinvariants of Sn and explicit basis for two row hook shapes
In 2002, Feigin and Veselov [4] defined the space of m-quasiinvariants for any Coxeter group, building on earlier work of [2]. While many properties of those spaces were proven in [3, 4, 5, 7] from this definition, an explicit computation of a basis was only done in certain cases. In particular, in [4], bases for m-quasiinvariants were computed for dihedral groups, including S3, and Felder and ...
متن کاملA NOTE ON THE COMMUTING GRAPHS OF A CONJUGACY CLASS IN SYMMETRIC GROUPS
The commuting graph of a group is a graph with vertexes set of a subset of a group and two element are adjacent if they commute. The aim of this paper is to obtain the automorphism group of the commuting graph of a conjugacy class in the symmetric groups. The clique number, coloring number, independent number, and diameter of these graphs are also computed.
متن کاملQuasiinvariants of Coxeter groups and m-harmonic polynomials
The space of m-harmonic polynomials related to a Coxeter group G and a multiplicity function m on its root system is defined as the joint kernel of the properly gauged invariant integrals of the corresponding generalised quantum Calogero-Moser problem. The relation between this space and the ring of all quantum integrals of this system (which is isomorphic to the ring of corresponding quasiinva...
متن کاملAutomorphism Group of a Possible 2-(121, 16, 2) Symmetric Design
Let D be a symmetric 2-(121, 16, 2) design with the automorphism group of Aut(D). In this paper the order of automorphism of prime order of Aut(D) is studied, and some results are obtained about the number of fixed points of these automorphisms. Also we will show that |Aut(D)|=2p 3q 5r 7s 11t 13u, where p, q, r, s, t and u are non-negative integers such that r, s, t, u ? 1. In addition we prese...
متن کامل