A Screen for Round Egg Mutants in Drosophila Identifies Tricornered, Furry, and Misshapen as Regulators of Egg Chamber Elongation
نویسندگان
چکیده
The elongation of tissues and organs during embryonic development results from the coordinate polarization of cell behaviors with respect to the elongation axis. Within the Drosophila melanogaster ovary, initially spherical egg chambers lengthen dramatically as they develop to create the elliptical shape of the mature egg. This morphogenesis depends on an unusual form of planar polarity within the egg chamber's outer epithelial cell layer known as the follicle cells. Disruption of follicle cell planar polarity leads to the production of round rather than elongated eggs; however, the molecular mechanisms that control this tissue organization are poorly understood. Starting from a broadly based forward genetic screen, we have isolated 12 new round egg complementation groups, and have identified four of the mutated genes. In mapping the largest complementation group to the fat2 locus, we unexpectedly discovered a high incidence of cryptic fat2 mutations in the backgrounds of publicly available stocks. Three other complementation groups correspond to the genes encoding the cytoplasmic signaling proteins Tricornered (Trc), Furry (Fry), and Misshapen (Msn). Trc and Fry are known members of an NDR kinase signaling pathway, and as a Ste20-like kinase, Msn may function upstream of Trc. We show that all three proteins are required for follicle cell planar polarity at early stages of egg chamber elongation and that Trc shows a planar polarized distribution at the basal follicle cell surface. These results indicate that this new mutant collection is likely to provide novel insight into the molecular mechanisms controlling follicle cell planar polarity and egg chamber elongation.
منابع مشابه
A Mosaic Genetic Screen for Genes Involved in the Early Steps of Drosophila Oogenesis
The first hours of Drosophila embryogenesis rely exclusively on maternal information stored within the egg during oogenesis. The formation of the egg chamber is thus a crucial step for the development of the future adult. It has emerged that many key developmental decisions are made during the very first stages of oogenesis. We performed a clonal genetic screen on the left arm of chromosome 2 f...
متن کاملMicrotubule Polarity Predicts Direction of Egg Chamber Rotation in Drosophila
Whole-tissue rotations have recently been recognized as a widespread morphogenetic process important for tissue elongation [1-4]. In Drosophila ovaries, elongation of the egg chamber involves a global rotation of the follicle epithelium along the anterior-posterior axis [5]. Individual egg chambers rotate either in a clockwise or counterclockwise direction; however, how the symmetry of egg cham...
متن کاملA Mutation in fat2 Uncouples Tissue Elongation from Global Tissue Rotation.
Global tissue rotation was proposed as a morphogenetic mechanism controlling tissue elongation. In Drosophila ovaries, global tissue rotation of egg chambers coincides with egg chamber elongation. Egg chamber rotation was put forward to result in circumferential alignment of extracellular fibers. These fibers serve as molecular corsets to restrain growth of egg chambers perpendicular to the ant...
متن کاملGenetic evidence for antagonism between Pak protein kinase and Rho1 small GTPase signaling in regulation of the actin cytoskeleton during Drosophila oogenesis.
During Drosophila oogenesis, basally localized F-actin bundles in the follicle cells covering the egg chamber drive its elongation along the anterior-posterior axis. The basal F-actin of the follicle cell is an attractive system for the genetic analysis of the regulation of the actin cytoskeleton, and results obtained in this system are likely to be broadly applicable in understanding tissue re...
متن کاملThe furry gene of Drosophila is important for maintaining the integrity of cellular extensions during morphogenesis.
The Drosophila imaginal cells that produce epidermal hairs, the shafts of sensory bristles and the lateral extensions of the arista are attractive model systems for studying the morphogenesis of polarized cell extensions. We now report the identification and characterization of furry, an essential Drosophila gene that is involved in maintaining the integrity of these cellular extensions during ...
متن کامل